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ABSTRACT

Analysis of some typical structures found in system dynamics
models of organizational and economic systems has shown
that it is possible to define a constant of the motion associated
with positive feedback loops having unity gain, and that such
a constant is a sensitive indicator of the under-lying dynamic
nature of the multiple loop structure. In this paper, a general
treatment of a class of positive feedback structures is developed
in which the unity-gain examples appear as singular cases.
The treatment includes development of a canonical form of
the structure, transformation of the structure to reduce
the order of the system, discussion of the eigenvalues of
the linearized structure, some properties of open-loop and
closed-loop step and pulse gains, general formulas for the
constants of the motion, an additivity property of the structure
and a brief discussion of the effects of stochastic influences
on the generic structure.

1. INTRODUCTION

To understand the relationship of structure to behaviour,
one can classify structures according to some idea of their
generic nature or ‘genericity’, and then categorize the behaviour
of these structures under different conditions. In introductory
courses this program often takes the form of presenting
simple one-level models of growth, adjustment to equilibrium
and S-shaped growth, followed by discussion of two-level
models whose behaviour encompasses growth, decay and
oscillations, The generic nature of these models resides in
large part in their ubiquity, simplicity and transparency.

Ublquity: All dynamic models can be described in
terms of inter-connected one-level sub-models.

Simplicity: A one-level model is the simplest dynamic
structure possible; a two-level model is the simplest
structure that can show oscillatory behaviour,

Transparency: No more than three parameters are
necessary to characterize the structure and the behaviour
of linear one- and two-level models.

The object of this paper is to present a generic structure which
may be composed of an arbitary number of levels and to
show how its behaviour may be determined relatively simply
by means of its open-loop step gain. As well, we develop a
very general or canonical form for the structure and we
discuss various aspects of the structure such as its eigenvalues,
closed-loop step and pulse gains, effects of stochastic in-
fluences on the structure and the definition of linear com-
binations of the levels which are constant when the open-loop
step gain is unity. The discussion will be largely abstract.
Readers who are interested in concrete examples are invited
to refer to a companion paper.!
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1.1 Generic Structure

A generic structure consists of many loops connected in a
stable and meaningful way. Stability in this context means
that links between elements are maintained over some range
of values of the levels in the loops composing the structure.
The criterion of meaningfulness serves to focus attention
on those structures that represent organizational or social
relationships found in functioning systems and to eliminate
randomly generated structures and pathological cases. The
concept of generic structure has been proposed informally
as a means of generalizing the understanding of some multi-
loop structure to other similar situations. Candidates for
this designation would surely include the Production-
Distributions system 2 the Commodity Cycles model® (probably
the first reference to the concept under the name generic
structure), and several renewable, and non-renewable resource
and ecological models®. The concept of generic structures
is an important contribution to the conceptualization of
complex systems. The generic nature of a structure should
help the analyst make sense of the wide variety of information
used to conceptualize the basic problemgenerating structure.
Careful use of these structures is necessary to avoid the ‘hammer
in search of a nail’ syndrome, However, they have proven
their pedagogical value in permitting students from widely
different back-grounds to achieve a degree of facility in
communicating their understanding of system structure
and behaviour to equally disparate audiences.

Another use for generic structures is for policy prescription
or system design. An understanding of the behaviour of
somewhat more complex structures than the simple one-
and two-level models studied in introductory courses should
be useful as a guide to modifying system structure to achieve
some dynamic performance goal. The idea is to provide a
catalog of well-understood structures so that the analyst
can focus on those elements of structure that are most im-
portant for his understanding of behaviour, The list of generic
structures which are thoroughly and succinctly analyzed
is still rather limited and there remains much to be done to
characterize the relationship of structure to behaviour in
those few structures that are commonly viewed as generic.
The analysis here should contribute to improving the ability
of the analyst to understand the effects of his modifications
of the system in the search for improved policies.

The feedback loop is the fundamental unit of analysis in system
dynamics. Yet it has proven difficult to develop an intuitive
understanding of the behaviour of systems of feedback loops
by reference to the behaviour of the component loops. The
difficulties are evidenced by a number of efforts to avaluate
casual loop diagrams as useful aids to analysis® *® . The quality
of transparency begins to be strained even for the behaviour
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of two-evel models as witness the use of the somewhat re-
condite concept of phase-shift to understand oscillatory
behaviour”.

In this paper, we focus on the behaviour of a generic structure
rather than its component loops. A great economy of thought
is realized since the behaviour of the generic structure can be
characterized by a relatively small number of parameters
whose meaning is intuitively clear to those responsible for
managing the system.

The generic structure of interest in this paper is organized
around a major positive feedback loop. Before describing
this structure, some definitions are introduced to specify
more clearly some of the concepts that will be used through-
out the paper It would seem unnecessary at this late stage in
the development of the field to define what is meant by a
feedback loop, or briefly, a loop. However, experience has
shown that some of the difficulties in communicating an
understanding of the behaviour of unity-gain loops, for example,
are due to sloppy definition of the structure under discussion.
These definitions are offered in order to minimize misunder-
standing of the relationships between structure and behaviour
to be developed in later sections.

Major loop — a set of levels in which each level in the
set is linked to one succeeding in the set. Each level
influences only one other level and its influenced by
only one other level in the set.

Minor loop — a level and a relationship such that the
level influences itself without influencing other levels.

Sub-major loop — a subset of the levels in a major loop
in which each level in the subset is linked to one suc-
ceeding level in the subset. Each level in the subset
influences only one other level and is influenced by
only one other level in the subset.

These definitions are illustrated in Figure 1 by a casual loop
diagram derived from the Salesman-Backlog-Delivery Delay
structure in the classic ‘Market Growth’ paper® which describes
another possible entry in the library of generic structures.
In the figure, the only levels for purposes of this discussion
are Salesmen, Backlog and Delivery Delay Average. We
emphasize here the distinction that is made between loops
and structures. Loops are components of structures. They
may be of some dynamic interest in their own right, but the
reason for studying structures and particularly generic
structures is to gain some understanding of how the inter-
actions among loops connected in ‘generic’ ways explains
behaviour.

Salesman
Effectiveness
— > Orders
Salesmen Booked
Delivery
Backlog———""7 Delay
Indicated A cO) Production
Salesmen Capacity
Budget R:ltlgery B(-)
Delivery
\Rate ‘/
Average

Figure 1: Examples of loops — A: Major, B: Sub-Major and
C: Minor.

2.  POSITIVE MAJOR LOOPS

To introduce some notation we start with a brief discussion
of an important component of the generic structure to be
introduced later. A positive major loop containing more than
one level is characterized by links of positive polarity (or
links of negative polarity occuring in pairs) from each level
to the succeeding level. In analytic terms this means that
the derivative of the input rate to the succeeding level with
respect to the preceding level is positive (or there are pairs
of derivatives that are negative). A major loop can be described
by means of an operator-matrix formalism as follows. We
let the levels be represented by x;, i=1, ... .n. The levels
are numbered in succession arour)l(é the major loop starting
at any level. The influence of level i-1 on its successor, level
i is described by a rate function which is a general function
of level i-1, a ii-l(xi-l)‘ To close the loop, the last level,
x_ influences its Successor, x; through the function a n(xn).
Starting with the first-numbered level and working forward
through the predecessors to the last-numbered level, we can
represent a major loop by the set of equations:

5‘1 = aln(xn)

’.‘n = an,n-l(xn-l)

Note that we ignore all exogenous inputs in order to con-
centrate on the endogenous structure of the system. Further,
we remark that the levels in system dynamics models are
usually defined to be non-negative quantities. We will assume
that such is the case and will further specify that for all

of the functions 3, il

ai,i-l(xi-l)=OWhe“ x;.1=0. )

We introduce a ring symbol (o) to represent functional
dependence so that

3 11061 = 3 1.19%j.1

Then the above set of equations can b? written as a vector
differential equation for x = (x, ... X )":

x=(0 a0 X
8210 0 e 0
(3
0 ...a.ii_lo o ... 0
0 0
L 4h,n-1° y




We assume that the functions a. . ; have non-zero derivatives
of some order. The loop is positive if and only if the product
of the first non-zero derivatives is positive. For example,
in the usual case that the first derivatives are all non-zero,
the loop is positive if

’ k]

» ’ 0
a 21 | 1,1_1 . n,n-la 1n>

where primes (°) indicate differentiation with respect to the
appropriate state variable (whose index is given by the second
index of the function).

No general solution of equation (3) is known. However, as is
usual in dealing with nonlinear systems, some general state-
ments can be made about the linearized version of the equation,
in which the functions a; ;. are replaced by their derivatives
i evaluated at some point in the state space. As has been
shown elsewhere”, the general solution of the linearized
version of equation (3) includes oscillating and decaying
terms. For any system with more than one level, the eigen-
values of the (linearized) model are in general complex so
that one expects growing or damped oscillations as the
characteristic behaviour modes. However the long-term,
persistent behaviour is dominated by the eigenvector whose
eigenvalue has the algebraically largest real part. Except
for very special initial conditions, the relevant eigenvalue
in the solution of the linearized form of equation (3) will
be positive and real. Thus the tendency for the system in
equation (3) is to grow or decline without limit.

Real systems do not grow without limit. The more usual
case is to find a positive feedback loop linking a set of levels
which are also included in one or more negative loops. When
such a negative loop is a minor negative loop, the unbounded
growth of any positive level due to unbounded input from
the preceding level in the major loop is counteracted to some
extent by an unbounded growth in the outflow from the
given level. The local control by the minor loop can com-
pensate for the unbounded growth of the major loop and
may precent that growth from being unlimited. A simple case
of a multi-loop structure composed of a positive major loop
with negative loops included to prevent unbounded growth
is given by having each level in the major loop controlled
by a minor negative loop.

In the operator-matrix formalism introduced above, we
represent the minor negative loops by functions

3;(%)) = -20%; (4)
These functions may be non-linear but they must be such that:

. the first non-zero derivative of the function a0 is
positive;

. the limiting value of the function as x; tends to zero
is zero.

The first condition guarantees that the minor loop is indeed
negative according to equation (4). The second condition
guarantees that there is no outflow from level x, when x;
is zero, The functions a;; correspond to generalized, first-order
delay structures for each level as emphasized by the explicit
use of the negative sign. Using the operator-matrix notation,
we can write the model as in Figure 2.
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Figure 2: General Positive Major Loop with Nonlinear Minor
Loops.

2.1 Linearizarion of the General Model

Not a great deal can be said about the characteristics of the
non-linear model shown in Figure 2 without some further
motivation. Thus we turn to a linearized version that has some-
what more familiar components (delay times, growth factors)
found in elementary structures. Since system dynamics models
can be formulated as piece-wise linear vector differential
equations, we do not lose much practical generality in the
arguments that follow.

When the delay functions a;; are linear, we can introduce
the delay time, di, explicitly.

x = [ -1/d, a 1,0
-l/d2

I

3210

‘a *-1/d.

ii-1° i

L . an’n_lo '-l/dn

Figure 3: N-level, Non-linear, Positive Major Loop with Linear,
Negative Minor Loops.

a;;0%; = (]/di)xi (5)
and the model in Figure 2 can be written as in Figure 3.
To linearize the functions forming the major loop, we can
expand each function in a Taylor’s series about some value,
X: 1, of the input variable x, {:

i-1 i-1

3 11 (D) = 2 X D X X)) (O
with the notion

2y (X = day /A ) ™
We can write the linearized model as in Figure 4. Terms con-

sisting of the constants a,; {(X;.;) are omitted since they
correspond to exogenous inputs.
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Figure 4: Linearized N-level Positive Major Loop with Negative
Minor Loops.



The equations in Figure 4 correspond to a cascade of first-
order material delays linked in a major loop which is positive
because the product of the coefficients in the links from one
level to the next are positive, i.e.

3’21. . .a‘i’i.]. . .a‘n, n-la’1n>0

It is easy to see that the same structure corresponds to a linked
set of information delays if we write

@ g = (b, 5 ®)

so that the links between succeeding levels are given by the
coefficients b; ; ; and each level is an exponential smoothing
of its predecessor. We can represent a structure consisting of
an arbitary succession of material and information delays
by re-defining, where necessary, the coefficients linking
any two levels in this way. The generality of the structure
demonstrated here is a strong argument in favor of its des-
ignation as a generic structure,

A further simplification of the dynamic information can be
made by rewriting the system matrix as the product of two
matrices, as shown in Figure 5.

x = [1/d, 1 dja'y, )2
1/d,
“1/d

d2a'2l -1
i Codpayg ol
. l/dn Ay
Figure 5: Linearized Positive Major Loop, Negative Minor

Loops with Delay Coefficients Incorporated in the Level
to-level Links.

Defining the diagonal matrix component as

pl= diag (1/d;, i=1,. . ., n) &)

and the system matrix component, A, as the second matrix
on the right-hand side in Figure 5, the vector equation in
Figure 4 can be written more compactly as

x=DlAx (10)

3. CANONICAL FORM OF THE NON-LINEAR GENERIC
STRUCTURE
We now turn to the derivation of a special, abstract form of
the generic structure which represents in a simple way all of
the essential dynamics and which is of the same form for
linear and non-linear models. The fact that this form is at
the heart of the generic structure impels us to call it the
canonical form of the generic structure. While no new dynamic
information is revealed by the canonical form, it motivates
some of the succeeding discussion and emphasizes the special
character of the unity-gain condition which is treated in a
companion paper’ .

It is a fairly natural step to define a canonical form of the
generic nonlinear structure which corresponds to the vector
equation

% = Ax (11)
where A is the generalization to the nonlinear case of the form
of the right-hand matrix shown in Figure 5, or equivalently,
the form of the matrix A in equation (10). Although we have
written equation (11) using a state vector x, we emphasize
that there is no necessary relationship between this state
vector and the vector used up to equation (10). We con-
centrate on the form of the operator-matrix A;i.e., with non-
zero elements below the diagonal except for the ‘corner’
element, and -1 on the diagonal. Even in the linear case there
is no transformation of the state space which allows us to re-
write the equation in Figure 5 without the diagonal matrix
D or its inverse. We will show how to express the generic
nonlinear structure in terms of a diagonal matrix operator and
the canonical matric operator. The resulting structure has
all the parameters of dynamic interest concentrated in the
major loop coefficient functions and this makes it easier
to develop a nonlinear generalization of the open-loop step
gain.

In the linear analysis, multiplication of the right-hand side of
each equation by the corresponding delay time leads to a
system matrix with -1 on the diagonal. This operation is
equivalent to inverting the linear function.

(H/d)jox; = x;/d; (12)
For the general case of non-linear delays, we achieve the same
result by operating on the right-hand side of each equation
with the inverse of the delay function a;;0. These operations
are valid if the delay function has an inverse. e.g., if the first
derivative is non-zero in the domain of operation of the level.
The inversion operations can be performed by writing the
identity matrix as the product of factors

-1
diag(a;;0)diag(a;; 0)
where - 1
a,;0a;; 0X; = 1 (13)

The resulting form of the nondinear structure is shown in
Figure 6.

Replacing the off-diagonal terms by

-1 —l
Ai,i-lo = au Oai’i_lo,l=2, PR ( A.lno = an Oumo (14)
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Figure 6: Decomposition of Non-linear Generic Structure
into Diagonal and Canonical Components.
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We have the matrix operator Ao in the desired canonical form
corresponding to the linearized system matrix A in Figure 5.
Note that the operators Aj ;.10 are the non-linear analogues
of the coefficient b; mtroduced above in the demonstration
of the generality of tLe linked material and delay structure.
The dynamics is determined essentially by the effect of the
composite operator

(15)

which translates the effect of an impulsive change in as
it propagates around the loop. The first term, read from right
to left, is the result of the impulsive change in x  as it affects
first x|, then x5, .. ., X, . . . X, | and ultimately x| again.
An lmpulswe cﬁange 1n x is transformed by the system into
an input rate to x that depends on the gain around the major
loop. The second term (-1) is the effect of the delay operator
on a change in x_,, i.e., the delay operator changes an impulsive
input into an outﬂow rate of equal magnitude (initially).
Subsequently, the unity delay operator maintains the outflow
rate equal to the quantity in the level x_. If the input to
x? is a unit step, expression (15) shows t?\at the behaviour

the system is determined by whether the composite operator
amplifies or dissipates the energy in the step input;i.e., whether
the result of the nonlinear operator is greater ir less than the
unity operator. We will see in section 3.3 below that the non-
linear component in expression (15) is a generalization of
the open-loop step gain. Having shown that the canonical
form can be developed from the general non-inear case,
we turn now to a study of some interesting aspects of this
form.

An,n-IOAn-l,n-zo .. 'Ai,i-lo ..-Agj0A 01

3.1 Reduction of the Order of the Major Loop

In some cases it is possible to reduce the effective number of
levels of interest in the major loop even before linearizing.
For example, a level x, may be created by smoothing the out-
flow rate from the level x,. This occurs in the Salesman-
Backlog loop in Figure 1 where Delivery Rate Average is a
smoothed value of Delivery Rate. In terms of our generic
model, we have in the notation of Figure 2.

allo=_3210 (16)
By adding the first two rows of the operator-matrix. we can
eliminate the entry in the first column of the second row.
This is achieved by multiplying the equation in Figure 2 by
the matrix.

T = 1 0 0

1 1 0 0

0 0 1 0..0

0 1

which gives:
x] = al ]0 O alno 5
X +xy 0 -ay50 0 .. a0 (a7
X3 0 8320 -21330 0 ..0
0 0

Xn o .. .. an .19 AP0

12

We see that the levels (x;+x 9) X3, ..., X are in a positive
major loop of the generic type we have been discussing, while
X) is apparently driven by the output of the loop, x 5 and
responds with a delay given by -a . In some sense we can
consider the major loop to be composed of only the last
n-1 equations. Unfortunately, we cannot make this observation
more precise. Even in the linear case, if we transform the
differential equation by using the matrix T, the generic ‘shape’
of the resulting matrix is lost. However, it is evident that
this kind of reduction of the order occurs in any vase where
an outflow rate is delayed. The commonly occuring cascade
of first-order material delays in one such case. The formal
reduction in order of the major loop structure justifies the
usual, intuitive practice of ignoring the effects of delays
when discussing long-term behaviour.

32 Transformation to Alternative Forms

It is a simple matter in the linearized case to show alternative
forms that are equivalent to the canonical form of Figure S.
These forms are simply different ways of writing the original
canonical form. Suppose we transform the vector of level
variables by multiplying it on the left by a matrix of con-
stants, T, to get new variables, Tx, which are linear com-
binations of the original level variables. The differential
equation can be re-written in terms of these new state variables.
In the nonlinear case, there are no general, intuitive results
for such an operation. Again we look to the linear case for
guidance, and we begin by linearizing equation (11) so that
the operator-matrix A is replaced by the matrix of derivatives
of the coefficients functions of A, namely, A’. Thus we
consider the equation

an

To determine the equation for the new variables, we mul-
tiply equation (11°) by the matrix T on the left and then use
a form of the identity matrix that is convenient, namely

x = A'X

1 =Tl

to get

Tx = TATITx (18)
so that the derivative of the new vector of state variables
appears on the left-hand side and the new vector itself is
multiplied by the transformed matrix TA'T . It is well-known
that linear transformation of linear differential equations
has no effect on the dynamic character of the structure®.
The effect of a transformation is merely to re-define the level
variables, Presumably the original levels have been chosen
for their real-world significance so that new combinations
of levels should correspond to new concepts relevant to the
system under investigation. Ideally, we should be able to inter-
pret the effects of a transformation, and what it reveals
about the system’s structure and behaviour in terms familiar
to those responsible for operating the system. In abstract
analyses such as the present one, transformation may help
to simplify or generalize the analysis and bring out sub-
tleties of the dynamic character of the system that otherwise
would require much simulation to reveal.

One way of re-writing the system matrix that is of interest
is the transpose of the given canonical form. The transpose



of A’ (denoted A'T) can be created by transforming the
original state vector by the matrix

T = 0 0 1
0 ... 10
0 1 0 0 (19)
o .. 0
1 0 0
This matrix is its own inverse so that
TAT! =TAT=AT (20)

The result of transforming x with T is to reverse the ordering
of the levels so that

TX = (X 0%, X)) 2

is the state vector operated on by AT o give the dynamics
which evidently are not affected by what are nominal changes
only.

Another form of the system matrix is superficially similar to
the transpose. With the original ordering of the levels
Xy, - - . Xy, .. Xp. it represents a major loop traced in the
opposite direction. That is, starting at x,, the causality runs
from x| to x 1 all the way back to Xy In any given set of
levels, these two forms, the canonical form of Figure § and the
transpose form, with the original ordering of the levels main-
tained, represent the only two major loops that can exist.
In a real system, these two loops will have different meanings
and often only one will exist in fact. A pedagogical example
of an urban housing, business structures and population
model'’ ® has both major positive loops with minor negative
loops and hence represents, superficially, a composition of
two generic structures of the type under discussion here.
We can represent such a composition by splitting the system
matrix into two parts, each of which is of generic type, with
one part having a matrix of the same shape as A’(with a
non-zero element in the ‘north-east’ corner), and the other
a matrix of the same shape as the transpose of A’ (with a
non-zero element in the ‘south-west corner). However, the
two major loops cannot be treated separately, nor can one
analyze one of the loops as a perturbation added to the other.
The interconnections provided by the sub-major loops which
result inevitably from the presence of both major loops are
not insignificant. One might summarize these comments on
the transformation of the linearized generic structure and the
addition of the direct and transpose forms by the verbal
formula.

The generic nature of the structure under discussion is
preserved under linear transformation, but is not additive.

It will be shown below that a suitable definition of the meaning
of ‘addition’ of the generic structure under discussion allows
us to specify cases in which two or more such structures
can be added in an intuitively appealing though non-
arithmetic way.

3.3 Gain

Each major-loop coefficient in the canonical form of Figure
5 represents the ‘gain’ acquired by a variable as it is transformed
in the transmission from one level to the next. The concept
of gain as used by system dynamicists is often ambiguous.

For purposes of this paper, the only definition of gain we will
use is the ‘open-loop step gain’'! and analogous measures
for closed-loop and pulse-input cases.

The input rate to a level must have dimensions [level/time] .
In physical terms, the gain factors represent the transformation
of the dimensions of one level into those of another as well
as any changes in magnitude that are imposed. Conserved
flows are represented by a cascade of material delays and no
change in dimensions is imposed by the loop coefficients.
The outflow from one level is the inflow to the next so the
loop coefficient in the canonical form is the ratio of the delay
time of the given level to the delay time of the preceding
level. Non-<onserved flows of information permit changes
in dimension as well as magnitude. Changes in magnitude
represent one aspect of the distortion of information that
can occur as it propogates through the system'?2.

Several interesting aspects of the system can be simply described
in terms of the gain. Let the product of the loop coefficients
in the system matrix A of Figure 5 be g, so that

n n
g = (e () (22)

Then g is the open-loop step gain (OLSG) around the major
loop of the linearized generic structure shown in Figure 4.
This is shown by the following argument. The open-loop
step gain is defined to be the limit as time goes to infinity
of the change in the major loop feedback input to level x

as a result of a unit step change in the input to the leve
Xy. The designation ‘opeii-loop’ comes from considering
the effect of the input step to propogate through x| to x
and then back to the input to x; in what is conventionally
called the open loop of the system. In the case of positive
unity feedback, the open loop gain is the same as the feed-
forward gain which is defined to be the ratio, as time goes
to infinity, of the change in the output of the system (measured
as the change in the rate of change of Xy due to xn) to the
change in the input (the unit step to X)-

To specify the system in terms of a feedforward part and a
feedback part, we consider the case of a unit step input to
the level x;. We construct the block-diagram representation
for the system by taking the Laplace transform of the equation
for each level X, 152, .. .0,

;=474 g%~ Xild; (23)
or, solving for X| in terms of the preceding X1

X =y j%p /1)) (24)
The Laplace transform of the equation for x, gives

xp =@ Xyt 1/s)[(s+1/d ) (25)

where the transform of the unit- step input is 1/s. These
equations can be represented in block diagram form as shown
in Figure 7. The Laplace transform of the feedforward step
response is

0(s)=2a" nXn(s) (26)
13



and is simply the product of the Laplace transform of the

unit step input and the Laplace transform of each delay and

gain element on the feedforward path. Thus we have
0(s)=1/s(a’ 5y .. @

n,n-12 1n) 27

n
O G+ 1/d)

From the equality of the open-loop and feedforward gams
when the feedback is +1 and from the final value theorem'?
we have the open-loop step gain 0

OLSG=lim O(=lim sO()=(ay). . 2y p12'1n) (o 478
t>o00 s> 0

(28)

Note that in the case that some of the delays are information
delays, the corresponding delay times do not determine the
gain. Defining the coefficient a’ .., as in equation (8),
we see that the delay time in the’ coefficient is cancelled
by the delay time in the product of delay times in the above
expression for the gain. Again we see a justification for the
practice of ignoring information delays when assessing the
long-term behaviour of a system.

The closed-loop step gain can be defined similarly as the limit,
as time goes to infinity, of the change in the output of the
closed loop due to a unit step change in the input. The closed
loop is defined by the unity positive feedback of the feed-
forward output 0(s) to the input to x;. We take the output

or
a’lnxn =(a'ln .. .3’21)1/5 (31)
n
]El (S + ]/dl) — (3'1n . .3‘21)
Then the closed-loop step gain (CLSG) is
CLSG=lim x| =lim sxl(s)
n
t->o00 s> 0= (igldi)(a In-¥21) = OLSG (32)
n’ + 4

when the limit exists. The limit does not exist when OLSG
> 1 since X (s)has polesin the right-half splane,corresponding
to growing exponennal terms in the solution. When OLSG=1,
the limit does not exist since sx,(s) has a pole at s—O
corresponding to a non-zero derivative of x(t) as t goes to
infinity. Both of these conditions are sufficient to invalidate
the use of the Final Value Theorem,

Further insight into the behaviour of the generic structure
is furnished by considering the response to a pulse input to
xy. The Laplace transform of the pulse is 1 so that the open-
loop pulse gain (OLPG) is

to be a’ ; x, as for the feedforward or open-loop gain. To
determine the closed-loop output we consider the block OLPG = lim s(a’y;...a"1p)
diagram of the system and trace back the source of the s> 0 =0 (33)
output as being due to the effect of each of the levels on the
total input to x; which is (a wXntl /s). Thus the feedforward n
operator is applled not only to the input step 1/s but also M (s+1/d)
to the feedback signal, a’;  x . The result is i=1 !
, , However, the closed-loop pulse gain (CLPG) is
a1 pX, = 06) (a 1nXnt1/8) (29)
= (@13 g1 - 32 1@ X *1) (30) CLPG = lim  s(ay.. ')l (34)
s->0
; —
s+1/d.
B, Gr1/d IG5+ 1d) — @y )
! 821> 1 —> a n,n-1 ! 2 n
(s+1/4,) (s+1/4,) (s+1/d )

Figure 7: A Block Diagram Representation of the Linearized Generic Structure with Step Input.
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CLPG = lim s OLSG

s> 0

(35)

n
(1-0LSG) +5(,Z, d;) +0(s?)

For OLSG <1, CLPG = 0. The response of a decay-type
system to a pulse input is to absorb it and decay to zero.
For OLSG > |, the limit does not exist for the reasons stated
above for CLSG. But for OLSG = 1 (the ‘unity-gain’ case'),
the pole and zero at 5=0 cancel and leave

n
CLPG = 1/;%, d;for OLSG =1 (36)
In the unity-gain case, a positive impulse is distributed around
the loop so that each level is larger by an amount proportional
to the reciprocal of the delay time around the major loop.
The response to an impulse in a unity-gain loop is to change
the equilibrium value of each level in the loop. This feature
of the response of the unity-gain positive feedback structure
inspires a metaphor for the system seen as a closed tube of
compressible fluid, circulating around the major loop and
transmitting the effects of exogenous inputs to each level
in the loop'.

Other features of the structure can also be written in terms
of the open-loop step gain. It is simpler to work with the
canonical form of the structure, but the following character-
istics are relevant to the whole structure since the two forms
are related by a simple (diagonal) linear transformation.

3.4 Eigenvalue Equation of the Linearized Model

As shown in Figure 5, the system matrix A captures all of the
essential dynamic information about the linearized structure,
while the diagonal component is a scale factor. This decom-
position is seen more clearly when we compute the eigen-
values (or, equivalently the transfer function poles), s, of
the system. The eigenvalue equation is

det(D~' A —sI) = detD™ ! det(A — sD) =0 37
which reduces to
n n

It is evident that the diagonal matrix acts to scale the value of l

each eigenvalue according to the delay time d, for each level.
To simplify the succeeding discussion we define the eigenvalue
scaled by the delay times to be

5; = sd; (39)
The eigenvalue equation can be written simply as

n

_Tr1 (1 +5,) - OLSG =0 (40)

l=

The fundamental dynamics of the structure is determined
by the open-loop step gain of the system which is determined
by two parameters

— the products of the delay times

— the product of the coeffieients of the relationships
around the major loop.

This simple characterization of the basic dynamics is another
reason to consider the structure to be generic. Although a
general formula for s; is not available, we can see the nature
of the eigenvalues by considering the special case where all
the delay times are equal so that

d;=d, fori=l,...n. (41)
This case is a limiting case for the more usual situation that
the delay times in a loop are not too disparate because all of
the levels have been defined to correspond to system elements
evolving over the same time horizon (or all levels have the
same ‘bandwidth”), In the case of equal delay times, the
eigenvalues are given by

s, = -1 +0LSG !/n 42
where the n values are determined by the n (complex) nth-
roots of the gain around the major loop. One of these nth-
roots is real and positive because the gain is real and positive.
The rest of the roots are distributed symmetrically about
a circle in the complex plane, whose radius is given hy the
real nth-root of the absolute value of the gain. It is obvious
from the above equation that the eigenvalues have negative
real parts if and only if the absolute value of the second
term is less than 1. Otherwise, there is at least one eigenvalue
with real part non-negative. In the case that the real part is
positive, the corresponding solution grows without limit.
Thus this structure can show growth or decay, with or without
oscillations. The addition of delays or smoothing increases
the order of the major loop without changing the magnitude
of the open-loop step gain. From equation (42), we see that
as n increases the real part of the nth root of OLSG increases
as cos(arg(OLSG)/n). Adding delays or smoothing tends to
reduce the stability of this structure.

A somewhat more subtle property of the above structure
appears if we consider the case where some of the levels are
pure integrators and there is no delay term in the corres-
ponding equation. Then the eigenvalue equation is

nl n2
Ms T (1+s)—-0LSG=0 (43)
i=1 1 j=nl +1 = j

From this equation we see that nl of the eigenvalies can be
arbitrarily assigned and their product divided into the gain
term to determine the remaining eigenvalues. The indeter-
minacy of the eigenvalues is a reflection of the non-physical
nature of the model. Another aspect of the same un-realistic
model is revealed by noting that the open-loop step gain
of an integrator is not defined (is infinite). These properties
show that the generic model, to be physically realistic, must
have a delay term associated with each level in the major
loop. The fact that the whole structure must be taken as
defined in order to make sense as a model of a real process
supports the contention that the structure is generic.
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4. CONSTANTS OF THE MOTION

Having shown the generality of the canonical form and having
produced some arguments in favor of the genericity of the
full non-linear structure, we turn now to the derivation of
certain supplementary variables, the so-called ‘constants of
the motion’ which enable us to characterize the behaviour
of the generic structure in a fundamental way. To simplify
the analysis, we start from the linearized canonical form of
Figure 5. We define the non-unity elements of the canonical
matrix A by

A i-1 da

i (@4

i.i-1
Noting that each column of A contains only two non-zero
coefficients, we are lead to add the equations in such a way
that the right-hand side of the resulting equation is equal to
zero. In this way we will show that some combination of the
levels is constant. If some combination of levels is constant,
we can say that the system is in equilibrium. Thus we seek
10 characterize the equilibrium state of the generic structure
under discussion in a simple way.

In what follows we consider only the question of how to
combine equations so that the resultant has a right-hand side
equal 1o zero. This is a simpler problem to solve than to
find a transformation which makes the right-hand side equal
to zero. To use a transformation, we would have to re-define
the level variables and thereby create some artificial, abstract
levels contrary to good practice. Furthermore, it is not possible
in the general nonlinear case to find such a transformation.
This constraint is not so severe for the piecewise linear models
commonly found in system dynamics work since they can be
treated as a succession of linearized models, with the linear-
ization performed about the trajectory of the full nonlinear
system. For this reason, we will déal principally with the
linearized version of the generic structure.

Combining the equations shown in Figure § is equivalent to
creating linear combinations of the row vectors of the system
matrix A. The determinant of the system matrix is simply

n
det A= (1" aay, ) - D)
= (D™ A A L A D (45)

= ()" OLsG - 1)

When the determinant is non-zero, the matrix is of full rank and
the row vectors are linearly independent;i.e.. no linear com-
bination gives a right-hand side which is zero. The determinant
is zero only when the open-loop step gain is equal to 1, and
this is the only condition under which some linear combination

of the row vectors will give a zero right-hand side. Since each
such linear combination of the rows reduces the rank of
the matrix by one, we can have at most n such linear com-
binations. We seek all vectors

Li = (ptige - i)
that are solutions of equations like

LA =0, by .0 (46)

where by is the ith component of the vector. The solution
in the general case is given by multiplying on the right by
the inverse of A,

1A—1
b - 0)A 47

If the right-hand side of equation (46) is zero, then the sol-
ution vectors t; are non-zero only when the determinant of
A is zero. However, when the determinant of A is zero, the
inverse does not exist. Thus we must simultaneously have
b. and det A equal to zero in order to find a non-trivial sol-
ution for t ;. Thus we seek solutions for t , when

b; = det A (48)

and then we see that the t . that we have found remain valid
when det A goes to zero. ft is clear from equation (47) that
the t; are proportional to the row vectors of the inverse of
the system matrix. Using this observation, we find the general
form of the solution of these linear equations for the com-
ponents t; of the vectors t ; is ®

t; = 1™ (cof AT)b/(det A) (49)

wl}ere (cof AT ) is the cofactor of element (i,j) in the matrix

i.e. the de erminant of the sub-matrix formed by crossing
out row | and column j in the transpose of matrix A. It is
straightforward to show that the t;; are, except for a factor

Q)] “'*_] which is common to both tlj and det A, as follows:
= (A’i,i- ]+l,]) =1, il (50)
= 1,j= 1)
= '(A‘l”i-l .. .A‘:l) A’In(Ayn’n-l- . .A’j+l‘j), (52)
j=itl.. . .n-1
= (A’i,i-l' A DA g (53)

The solutions for t; show a cyclic appearance of the co-
efficients A’;.. Note that the only element of A which does not
appear in tHe determination of tis A’ i+ § the non-unity
element in column i of the matrix A orin row i of the matrix
AT (for i=n, the coefficient A’ In is absent). We have found
vectors t ; such that

1A =(0,....det A,...0) (59)
where det A appears in the ith component of the vector on
the right-hand side. When det A is non-zero, each ot the
1. is independent of the others. We see that the n lincar

1 . .
combinations

LiX 7 4 X Hxs .n (35)

SXt Lt i=12..
i .+t"x] Steox oL i=12

in"n
are constants of the motion when det A equals zero, since

(1;x)=t;Ax =(det A)x),i=1....n (56)
Note that the rate of change of each linear combination in

equation (56) depends only on the level x; when det A is
non-zero. From the previous observation d\at the vectors




t; are proportional to the row vectors of the inverse of the
system matrix, it is clear that the existence of such linear
combinations, which are constant when the determinant of
A is zero, is not restricted to the generic structure under
discussion. We can find such constants of the motion for any
linearized system. The unique feature of this structure is
that the determinant of A, the eigenvalues, and the polarity
of the structure, in essence, all of the fundamental dynamics
depend in a simple way on the open-loop step gain.

The necessity of having one minor loop for each level in the
generic structure appears again in the observation that if
there were one or more integrators, then the limit as the
determinant of A goes to zero would imply that at least one
of the off-diagonal terms was equal zero, and the major loop
would decompose into two or more sub-major loops.

4.1 Example: A Five-level Generic Structure

As an illustration, we consider the case n=5 and show the
canonical form and the vectors t ;. The equations in canonical
form are

x=[]1 0 0 0 A5|x 7

The vectors t ; are

58
L) =(1, A’ 5AT54AY3A 3, A’ sA54A 43, AT 5A 54, ASl'S))
(59)

L= (A LAY A sA A3 ATy AT 5Ase, A1 ATy s)
(60)

3= (A'3pA%) Al 1 A'pA% A1 5Asq, A'32A7 1471 5)
(61)

L4 = (A'g3A'3pA" ), Alg3hisp Algz L, Alg3AispA’ A'ys)
(62)

Ls= (A'5gA'43A39A ) 1 AisgAlg3AT3y, AlsgA a3, A'sa 1)

4.2  Unity-gain in the n-Level, Linearized Model

When det A equals zero, we see from equation (56) that the
rate of change of the n linear combinations of the rows of
A vanish. In this case, the coefficients of the matrix A satisfy
the relation

A‘lnA,n,n‘l' . A,zl =1 (63)

so that one coefficient can be written as the reciprocal of
the product of all the others. This is the unity-gain case. In
fact, the linear combinations are proportional to each other with

=AY ty= =AY A a2 A1k (64)

Thus the rank of the matrix formed from the t ; as row vectors
(and proportional to the inverse of the system matrix) changes
from n to | as det A goes to zero. Alternatively, one can
say that the number of independent constants of the motion
changes from n to 1 as det A goes to zero, or as the system
goes to a unity-gain condition. In this sense, the unity-gain
condition reduces the order of the system from n to 1, further
evidence of the singularity of the unitygain state. This
singularity inspired the interpretation of the constant of the
motion as the ‘circulating content’ of the major loop as
described in a companion paper’.

When det A is not equal to zero, the proportionality shown in
equation (64) holds for all components of the vectors t;
except the ith component. Multiplication by the appropriate
product of gain factors shown in equation (64) gives the
ith component of t_ ; equal to the gain around the major
loop, which is not equal to | in the general case so that equation
(64) is not valid and the number of independent linear com-
binations of the levels, or the order of the system, is n.

We have shown that the linearized canonical form can be
reduced, on multiplication by certain vectors t ;, to equation
(56) so that the n linear combinations of the states x; are

—  mutually proportional, and
—  constant

as long as the system matrix is singular, i.e. as long as det A
equals zero. In the case of a general system structure, the
constants of the motion are independent linear combinations
of the levels with no intuitive interpretations or interrelations.
The mutual proportionality of the constants of the motion
shown here is a feature of the generic structure under dis-
cussion. This feature is simply one aspect of the unity-gain
condition, whose study inspired the present work.

4.3 Structural Polarity

We see also that, for the generic structure under discussion
here, the dynamic behaviour of the linear combinations of
the states is given in an essential way by the sign of the deter-
minant of A. If the sign is positive, the combination grows
‘exponentially’ since both sides of the equation are linear
in the state x.. Similarly, if the sign is negative, the com-
bination decays ‘exponentially’. Recalling that det A is prop-
ortional to (OLSG-1) we can see that the growth, decay or
constancy of the ‘constants of the motion’ for this generic
structure are determined respectively by

OLSG>1,0LSG<1,0LSG=1 (65)

The simple dependence of the dynamics of the structure on
the single measure- the open-loop step gain- suggests that we
may define the polarity of the structure according to the sign
of det A i.e., that the conditions (65) correspond respectively
to

positive, negative, and neutral polarity

of the generic structure. In view of the generality of the resuit
in equation (64), this designation of structural polarity may
equally well be applied to other structures. However, for
general system structures, the polarity will not depend on a
simple combination of the system parameters such as the
open-loop step gain and may have no intuitively useful meaning.
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44 Stochastic Effects

System dynamics models are usually developed as determin-
istic models of organizational and social systems with fixed
coefficients and few or no exogenous inputs. Complete testing
of a model commonly includes the application of stochastic
test inputs to various levels in order to determine the response
of the model to random, uncontrolled influences.

With no exogenous inputs, the constant of the motion is
strictly constant when the determinant of the system matrix
is zero, or the gain around the major loop is unity, Exogenous
inputs

_ t
u =(uy,.. . .un)

(66)
to the levels x are combined in the same way as the net
rates (the derivatives of the levels with respect to time) shown
in equation (56) and appear as a second set of terms on the
right-hand side of that equation or as shown in equation (67).

tx = (det A)x; +tu (67)
When the first term is zero, the exogenous inputs act directly
to change the constant of motion. Uncorrelated stochastic
inputs are represented by a sequence of pulses of random
magnitude. As noted above, when the gain is unity, a pulse
input is distributed around the loop so that each level is
increased by an amount proportional to the total delay time
around the loop. From equation (67), we can infer that the
generic structure is more sensitive to exogenous inputs in a
period when the constant of motion is passing from a period
of growth to a period of decline (or vice versa) so that the
first term on the right-hand side is passing from positive to
negative (or vice versa). Otherwise, the effects of exogenous
inputs are modified by the term proportional to one of the
major loop levels. In particular, independent stochastic inputs
are more or less correlated in their effect on the constant
of motion according to whether the first term is non-zero or
€10,

A different kind of problem is posed by the possibility that
the coefficients are stochastic. In this case, commonly en-
countered when considering aggregate relationships between
similar elements, the question is whether the stochasticity
imparts any significant changes to the average or, more precisely,
to the ‘certainty equivalent’ behaviour. The unity-gain con-
dition is in some respects similar to the ‘zero mean growth
rate’ example proposed by Athans as an illustration of the
‘uncertainty threshold principle’?®. Simply put, if the dist-
ribution of the gain about a mean value of 1 is sufficiently
wide, the system may show growth rather than the equilibrium
condition that would prevail in the absence of the stochastic
variation of the gain. Tests of the importance of the uncertainty
threshold principle for models with nonlinear feedback control
are currently under way.

4.5 Nested Generic Structures and Additive Gains

We noted above that it is not possible to combine two generic
structures of the same order and get a structure of the same
type. Such a combination includes two independent sets of
relationships or flows of casuality linking all of the levels
in the structure. The combination of two such structures
introduces a welter of cross-links and sub-major loops. It
is not surprising that the simple relationships between the
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gain, the eigenvalues, the constants of motion and the
behaviour are not preserved in the combined structure. However,
it is possible to generalize the generic structure, to include
a certain kind of sub-major loop and the generalization shows
some counter-intuitive features. We consider the generic
structure in canonical form as shown in Figure 5 with the
addition of a single sub-major loop of the same type ‘nested’
in the larger structure. An example is given in Figure 8 where
the sub-major loop linking levels 3 to 5 is included in a major
loop linking all S levels and only the non-zero

x= (4 A'ys )
A,21-]

[

A'32-1

Ay -l

A‘54 -1
\

Figure 8: Nested Generic Structures.

elements are shown. Note that the major and sub-major loop
structures are both of the same form as the generic structure.
It is easy to show that

det A=-1+A'35A54AY3 ¥ A" sA'S4AY3A1  (68)
so that
det A=-1-+OLSG +0LSG (69)
sub-major major
where
OLSG =A'35A’54A'3 (70)
sub-major
= open-loop step gain of sub-major loop
OLSG =A'|5A'54A3A A ) (1)
major

=open-loop step gain of major loop

By the same procedure as before, we can find vectors t;
such that
t;A=(0,..  detA,. A0) (72)

where det A appears in the ith component. In this case it
is easy to show that for i=1, for example.

typ = 1-A'35A%4A%;3 (73)
g = AljsA’s4A%3A3) (74)
113 = A'ysAlseAs3 (75)
tig = AljsAsy (76)
tis = Algs (17



When det A is equal to zero, there is a constant of the motion
and it is again proportional to L)X, Note that the only
difference in t ., in comparison with the example shown
earlier, is in the first component which is reduced by the
gain of the sub-major loop. The behaviour of the ‘constant of
the motion’ is given by the sign of det A as before. It may
happen that

OLSG

major

< 1.0LSG <1 (78)
sub-major

so that for cach piece of the structure, the corresponding
constant of the motion that can be defined is decreasing. As
noted in Section 4.2, the conditions in equation (78) justify
calling the corresponding structure ( or sub-structure) a
negative feedback structure. However it may also be that
OoLSG | +0LSG ) > 1 (79)
major sub-major -
so that two structures that separately are of decay type,
may show constancy or even growth of the ‘constant of the
motion’ defined for the whole structure. Again, there is
some justification for calling the resulting structure a positive
feedback structure since the rates of change of the constants
of the motion are positive functions of the levels. The nesting
of this kind of generic structure may occur when the value
of some level is used simultaneously to form the input to a
growth policy as in the term A’5xs, and to form some
traditional (smoothed) standard o% performance, also in a
positve loop, as in the term A’35Xs. The possibility of such
an occurrence is one aspect of this generic structure to be
kept in mind when designing policies or interpreting the
dynamic effects of structural changes in a model.

Finally, we note that the previous statement that generic
structures are not additive must be interpreted to mean that
generic structures whose directions of flow of casuality are
different (opposed) are not additive. In this section, the
direction of flow of casuality is the same in the major and
sub-major loops. The additivity is evidenced by the fact
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