RANDOM PROCESSES IN SYSTEM DYNAMICS

Erik Mosekilde and Steen Rasmussen, Physics Laboratory IlI,

2800 Lyngby, Denmark.

The Technical University of Denmark,

Frik Mosekilde is a senior Lecturer at the Technical University of Denmark where he teaches courses in modern physics, energy
planning, and system dynamics. He is doing research in dynamic modeling of economic, technical, and physiological systems,

and he is presently co-authoring a textbook on System Dynamics,

Steen Rasmussen, a student at the Technical University, has just completed his M.E. thesis on “Structure, Fluctuations, and

Stability”,

ABSTRACT

Using examples from physics and operational research it is
shown how DYNAMO can be applied to systems for which
the development in time depends upon a series of random
events. It is further discussed how the notion of a Markov
process, fundamental to stochastic systems analysis, com-
pletely concurs with the idea of a state determined system
underlying System Dynamics. Non-Markovian systems can
usually be brought into Markovian form through a rede-
finition of state space, and we therefore conclude that
System Dynamics has a general applicability to stochastic
systems.

1. INTRODUCTION

The feed-back approach to management systems analysis
developed in Industrial Dynamics' emphasizes the general
structure of decision making rather than the individual
decision. Management is to be considered as a continuous
generation of control signals that adjust the flows of resources
and materials through a system, with accumulation or depletion
along the material flow lines gradually changing the conditions
under which new decisions have to be made. As a reflection
of this picture, the User’s Manual® presents DYNAMO as a
computer language which compiles and executes continuous
simulation models.

Not all systems process a continuous flow of materials,
however,®>* and sometimes a limited number of decisions
can be of vital significance to the future development of
a system. Moreoever, the available information is not always
sufficient to determine the time at which a large material
element passes from one state to another, or to determine
the outcome of certain crucial decisions®. Under these con-
ditions a discrete, stochastic description seems more app-
ropriate than a continuous one. Industrial Dynamics has now
developed into a general theory of dynamic systems with
applications in a wide range of different disciplines, and the
question therefore arises whether System Dynamics can be
applied to stochastic systems, i.e., to systems for which the
development depends on the outcome of a series of random
events, We have already discussed this question in a comm-
unication to the System Dynamics Conference in Bruxelles®.
It is the purpose of the present paper to investigate the problem
in further detail and to show that System Dynamics and
DYNAMO can be used quite generally to simulate stochastic
systems. Compared with other methods used in this field,
System Dynamics has the advantages of a well-developed
flow-diagramming technique, a formalism which emphasizes
feed-back and non-linearities, and a simple and efficient
simulation language. The literature offers little evidence
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of applications of System Dynamics to stochastic systems,
however, and for this reason we assume that our discussion
can contribute to a clarification of the theoretical found-
ation of System Dynamics, as well as to a broader use of the
method.

With the introduction of concepts such as dissipative structures
and self-organization, Prigogine and his co-workers’™'® have
stimulated a rapidly growing interest in stochastic processes.
Together with the works of Lorenz'!, May'?, Feigenbaum'?,
and Mandelbrot'* on bifurcation theory, chaotic behaviour,
strange attractors, and fractal dimensions, the results obtained
by the Bruxelles school have initiated the study of several
new classes of instability phenomena. It is a promising area
for future research to try to investigate some of these in-
stabilities by means of System Dynamics. The contention
that macroscopic systems can be extremely sensitive to small
fluctuations” appears to contradict the assumption made
by most system dynamicists that social systems are relatively
insensitive to parameter variations. In our opinion, the con-
clusion which should be drawn from this difference in view
is that system dynamicists must pay more attention to stability
problems, to the problems associated with aggregation, and
to the significance of random processes.

2. MONTE-CARLO SIMULATION

Diffusion is a characteristic example of a random process in
physics. Although the molecules of a gas move in accordance
with Newton’s laws, their number is generally so large that
it is impossible to imagine that we could follow the path of
the individual particle in detail. On a macroscopic, pheno-
menological level, the process can be treated by means of a
diffusion equation, i.e., a relation that specifies the develop-
ment in time of the average density of a large number of
molecules. For a more detailed treatment, however, we need
a method that can perform the necessary transformation
from the microscopic description to the macroscopic level.

An approach to this “transformation”, which we shall refer
to as a Monte Carlo simulation, is to follow the course of
a single particle through a large number of scattering pro-
cesses, considering each of them as a random event'®. The
outcomes of the individual scattering process (the time of
flight since the last collision, the scattering angle, the energy
loss, etc.), are then assigned according to certain probabilities
derived from basic physical as well as from statistical con-
siderations. Using this approach one can avoid all the
approximations usually required to reach a solution in an
analytical model. The disadvantage is that a very large number
of scattering processes (10,000 or more) may have to be
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considered to get satisfactory results. In many cases, however,
one can acquire an impression of the characteristic behaviour
of a system through a limited number of relative short simula-

tions.

2.1 One — Dimensional Random Walk

As a first example of how DYNAMO can be used to perform
Monte Carlo simulations, consider a one-dimensional random
walk. A particle is bound to move along an x-axis with a
constant speed VO. Each third time unit the particle under-
goes a virtual scattering process in which, with equal prob-
abilities, it either continues undisturbed or reverses its
direction of flight. Formulated in DYNAMO, this problem
may read:

L X.K=XJ+(DT)(V.JK)

N X=0
R V.KL=VO*CLIP (I 1. SNN.K.0)

C VO=1

A SNN.K = SAMPLE (NOISE ( ) ,3,.2)

Here, the state variable X and the rate variable V denote the
position and the velocity of the particle, respectively. Each
third time unit the auxiliary variable SNN samples the series
of random numbersgenerated by NOISE( ). The CLIP function
hereafter determines in which direction the particle moves.
If SNN>0, then V>0 and the particle moves in the positive
x-direction for the next three time units. On the other hand,
if SNN<O, then V<0 and the particle moves backwards.
With its constant intercollision time, the above description
can be classified as a discrete time formulation. The one-
dimensional random walk is usually formulated in a slightly
different way by assuming that the time of flight between
two collisions is exponentially distributed with an average
time of flight TAU. The scattering probability is then in-
dependent of the previous history of the particle, and the
probability that a scattering will occur in the time element
DT (<<TAU) is DT/TAU. The particle is now assumed to
reverse its direction in each collision.

A System Dynamics flow diagram of this system is shown in
Figure . A particle bound to move along a single axis has
two degrees of fredom, and we therefore need two state
variables. Normally these would be the position and the
momentum {(or the velocity) of the particle. If we assume
that the speed remains constant VO, we can also use the
position X and the direction of flight DOF. The direction
of flight is a discrete variable which equals +1 when the
particle travels in the positive x-direction and -1 when the
particle travels in the negative direction. The corresponding
rate variable CID represents the change in direction.

It is worth noticing that the introduction of stochastic pro-
cesses does not affect the structure of the flow diagram.
The rate variables now describe either continuous processes
(V) or abrupt tiansitions from one state to another (CID),
and some of the auxiliary variables describe transition prob-
abilities. However. the general rules of flow diagramming
remain unchanged.

As the DYNAMO tormulation of the one-dimensional random
walk in the continuous time formulation we have used:
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Figurel: Flow diagram for a one-dimensional random walk
in a continuous time formulation. Due to the simplicity
of the problem there is only one feedback loop, but the
lack of significant feedback is not necessarily a characteristic
of stochastic systems.

L XXK=XJ+(DT)(V.JK)

N X=0

R VXL=VO*DOFK

C Vvo=1

L  DOF.K=DOF.J +(DT) (CID. JK)

N DOF=1

R CID. KL =— 2*DOF.K*CLIP(1/DT,0,DT/TAU.,
NNNK)

C TAU=3

A NNNK=NOISE( )+.5

SPEC DT=1

RUN

NOISE 345678
RUN
NOISE 234565
RUN
NOISE 567487
RUN

NNN.K generates a series of random numbers uniformly
distributed between O and 1. By means of the CLIP function,
NNN is compared with the probability DT/TAU that a
scattering will occur in DT. I[f NNN < DT/TAU, this is taken



to mean that a scattering does occur, and the direction of
flight is reversed. if NNN > DT/TAU, no collision is assumed
to take place, and the particle continues undisturbed. In
principle, the formulation is independent of DT. The sim-
ulation results will depend on DT, however, due to the effect
that DT has upon the series of random numbers generated
by NOISE and due to the fact that these random numbers
are compared with a DT-dependent scattering probability.

Figure 2 shows a typical simulation result for DT = 1. (This
means that the condition DT/TAU<<I has not been strictly
fulfilled). We can see how the particle is bounced back and
forth. In the long run, the particle is likely to move away
from its initial position, although of course there is no pre-
ferred direction for this walk-way.

Figure 3 shows a set of simulation results with a somewhat
longer time scale and with four different initiations of the
NOISE function. Note how such a set of simulations can be
performed in RERUN mode by introducing additional NOISE
cards.

2.2 Two — Dimensional Random Walk

The method described in the preceding paragraph can easily
be extended to treat higher dimensional problems. If the
speed of the particle is assumed to remain constant, we need
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Figure 2: Simulation results for a one-dimensional random
walk with exponentially distributed times of flight.
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Figure 3: Simulation results for a one-dimensional random
walk with four different initiations of the NOISE functions.
Depending on the series of random numbers generated by
NOISE, the particle can walk away from its initial position
in either direction.

three state variables to describe a two-dimensional random
walk, These can be the x-coordinate, the y-coordinate, and
the angle © between the direction of flight and the x-axis.
The velocity components are determined by Vy = Vg
cos © and Vy = Vj sin @ , and the only DYNAMO equation
that deserves atténtion is the rate equation which determines
the change in © . For this equation we have used.

R CITKL =
TAU NNNK)

3.141593*(NOISE ( )+.5)*CLIP(1/DT,0,DT/

As before, NNN.K generates a series of random numbers
uniformly distributed between 0 and 1. The CLIP function
determines whether a scattering process occurs during the
time element DT. The factor 3.141593*(NOISE( )+.5)
adds a random fraction of m to © in each scattering process.
Note that we need two separate NOISE calls to secure that
all scattering angles can be realized. If NOISE ( )+.5 in the
equation for CIT is replaced by NNNK, only scattering
angles smaller than n (DT/TAU) will be realized, since only
random numbers NNN < DT/TAU lead to scattering. At
the same time, the formulation secures that the scattering
angle is statistically independent of the time of flight since
the last collision.
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Figure 4: Simulation results for two-dimensional random walk
with exponentially distributed times of flight, and with all
scattering angles equally probable.

Figure 4 shows a typical simulation result obtained with
this model. The PHASE plot has been constructed manually
from the development in the two-position coordinates. Figure
5 shows a similar result obtained under the assumption that
there is a fixed intercollision time, and that the particle
can travel only in one of the four directions specified by
the coordinate system. This (discrete time and discrete space)
model is of interest in connection with a discussion of the
so-called self-avoiding random walk (see the paragraph on
non-Markovian processes).

3. QUEUEING PROCESSES

An important field of application for the theory of stochastic
processes is the study of queueing phenomena in communi-
cation, transportation, production, and service systems'®.
Consider a telephone switchboard with a certain number of
outgoing lines. Since the operator usually has no information
that allows him or her to know in advance when a particular
customer wants to call, and since the various customers
usually use the phone independently, calls to the switch-
board cun be cunsidered as random events occuring singly

in time,

Let us assume the existence of a parameter AROC, the average
rate ol calls. such that the probability that a call will occur
during the time element DT is AROC*DT (<<I). Let us

36

Figure 5: Simulation results for rtwo-dimensional diffusion
with constant time of flight, and with only four directions
allowed.

further assume that the duration of a call DOC is a rundom
variable which is exponentially distributed according to

P<DOC>t> = exp <-t/ALoc>.

Here, ALOC denotes the average length of a call. P (DOC>!.‘)
is the probability that the duration of a particular call will
be longer than t. With this distribution of DOC, the prob-
ability that a particular call will be terminated in the time
element DT equals DT/ALQC, independent of the previous
history of that call.

As we shall see in connection with our discussion of the
so-called Markov condition, this is a very crucial assumption.
At the same time we shall indicate how one can do away with
the assumption and treat problems with other kinds of dist-
ributions. For the moment, it suffices to note that the
exponential distribution appears to be a reasonably vood
approximation for the duration of local telephone ..V '°.

At any given moment, the state of the switchboard may
be described in terms of the number of occupied lines NOC.
Note that we are now using a macroscopic systcins formulation
in which the state variables measure the mumnber of elemcnis
in the various possible microscopic states. The curresponding
rate variables are the rate of incoming calls RIC und the
rate of termination of calls RTC. The DYNAMO program
may read:




NOL.K =NOL.J +(DT) (RICJK-RTC.JK)

NOL = |

RIC KL = CLIP (1/DT,0,AROC*DT,NOISE( )+.5)
AROC = .5 (calls per minute)

RTCKL = NOLK*CLIP (1/DT,0,DT/ALOC,
NOISE ( ) +.5)

C ALOC = 4 (minutes per call)

~ 0 x” z o

DT must be chosen such that both of the conditions AROC
*DT<<I and DT/ALOCLKI are satisfied. In practice, this
means that we should take DT< .2.

Figure 6 shows a typical simulation result with the above
model. For more complicated systems, simulations of this
kind may be used, for example, to determine the required
number of lines.

NUMBER OF LINES OCCUPIED

] 1 | ]

The switchboard model can be “‘reduced” into a continuous,
deterministic model through the replacements:

CLIP(1/DT,0,AROC*DT NOISE( )+.5) ——» AROC
and
CLIP(1/DT,0 DT/ALOC,NOISE( )+.5 ——»1/ALOC

The reason for using a stochastic description is that the number
of calls handled at any given time is small, and that random
fluctuations therefore play a significant role in the performance
of the system. For a macroscopic system with a large number
of elements one might expect that such an “aggregation of
events” into continuous flows would generally be justified?.
In the presence of instabilities, this aggregation procedure
may become questionable, however, and the system behaviour
may be controlled by small irregularities®>”.

4. THE MARKOV CHAIN

Another stochastic problem from the field of operational
research is the so-called Markov chain'®. Consider a com-
ponent such as a car battery which is subject to wear, and
suppose that the batteries of a limited number of cars are
inspected regularly each third month. By this inspection the
batteries are classified as being in one of three states:

state 1: good
state 2: average

state 3: poor

Average means that although the battery still functions,
the specific weight of the electrolyte has started to change,
and the recharging time has become a little too long. Poor
means that the condition of the battery is now so unsatis-
factory that it is likely to fail before the next inspection.

Figure 7 illustrates how the structure of this problem is usually
presented. The Pjx parameters here denote the transition
probabilities between the various states. Thus, P,, is the
probability that, assuming a battery is found to be good in
one inspection, it will be only average in the next. P, is
the probability that a battery remains good from one in-

0 10 26 30 40
TIME URITS (MminuTes)

Figure 6: Simulation results for the simple switchboard model
showing the number of occupied lines as a function of time
with an average of .5 calls per minute and a mean duration
of 4 minutes per call. In the present simulation, the maximum
number of occupied lines is 3, but to some extent this number
will vary with the set of random numbers generated by
NOISE ().

Figure 7: A Markov chain describing the development of a
(limited) number of car batteries as they pass from state 1
(good) through states 2 {average) and 3 (poor) to final failure.
Such a model can be used for instance to devise a proper
policy for maintaining the batteries.
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spection to the next, and P,, is the probability that a battery
recovers from average to good between two inspections.
Similar definitions hold for P;,, Py3, P35, Pyj, and Py,.

To simulate this problem with DYNAMO, we need three
subsequent state variables measuring the number of batteries
in each of the three microstates and connected with rate
variables corresponding to the various possible interstate
transitions. To generate these transitions stochastically, we
need three independent NOISE calls, but otherwise the problem
is straightforward. Our purpose in discussing it here is to
make comparisons in the discussion of non-Markovian pro-
cesses.

5.  THE MARKOV CONDITION

Stochastic processes may be divided into discrete time and
continuous time processes, The one- and two-dimensional
random walks with constant time of flight, and the four-
state Markov chair for automobile batteries are examples of
discrete time processes, while the one- and two-dimensional
random walk processes with exponentially distributed times
of flight and the telephone switchboard are examples of
continuous time processes.

In the processes that we have considered so far, the transition
probabilities at a given time (or, for discrete time systems,
in a given time interval) only depended on the state occupied
at that time, and on the possible final states. It did not depend
on what had happened before that time. This is known as
the Markov condition'®, and systems satisfying this condition
are referred to as Markov systems. Since for a Markov system
the future path of any particular element does not depend upon
the previous history of that element but only on its present
state, we do not need to follow the passage of the individual
element from state to state but we can lump all elements
which are in the same microstate together and use the number
of elements in each microstate as state variables. The corres-
ponding rate variables will then be determined by the state
variables, and the Markov condition is therefore equivalent
to the assumption of a state-determined system underlying
System Dynamics. We may thus conclude that System
Dynamics can be applied to all stochastic systems that satisfy
the Markov condition, and for which time is the only in-
dependent variable,

6. NON-MARKOVIAN PROCESSES

Not all stochastic processes satisfy the Markov condition,
however, and it is therefore of interest to find out to what
extent System Dynamics can be applied to non-Markovian
systems. As a simple example of a non-Markovian process,
consider a modified version of the wearing process for auto-
mobile batteries. Suppose that when a battery has entered
state 2 (average), it either recovers before the next inspection
or it remains average. Suppose further that if a battery is found
to be average in two subsequent inspections, it always decays
into state 3 (poor) before the following inspection. Since,
with these assumptions, a battery spends two time periods
in state 2 before decaying into state 3, the transition prob-
ability between states 2 and 3 depends on the time that a
battery has already spent in state 2, i.e., upon the history
of the battery. The Markov condition thus appears to be
unsatistied.
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Figure 8: Conversion of a non-Markovian process into a state-
determined process through the introduction of an intermediate
state.

As illustrated in Figure 8, however, a simple extension of
state space will convert the process into a Markov process.
We just need to introduce an intermediate state, state i (average,
2. time) between state 2 (average, 1. time) and state 3 (poor).
In System Dynamics this corresponds to the introduction of
an extra level (or more generally extra levels) into the material
flow line. We may therefore conclude that discrete-time
problems for which the non-Markovian character is associated
with the elements spending a well-defined time in certain
states can be treated in System Dynamics.

The situation becomes a little more complex when we turn
to a continuous-time problem. Consider again the telephone
switchboard and assume that all calls last precisely 4 minutes.
If we were to treat this problem rigorously by introducing
inter-mediate states, we would need an infinite number of
such states. An alternative method is to construct what we
may call a System Dynamics stopwatch, i.e., a rate-level
module which integrates TIME from the initiation of a
call. When 4 minutes has passed, the stopwatch, by means of
a logical function, terminates the call, and at the same time
resets itself to be ready for the next call. This method requires
a stopwatch for each call that the switchboard can handle
at a time, and it is not possible to lump the calls together
and consider the state of the system as determined by the
number of occupied lines. Nontheless, we conclude that
the problem is managable with System Dynamics.

In stochastic systems analysis'® the term renewal processes is
used to designate processes for which the time an element
spends in a given state is described by a probability dist-
ribution different from the simple exponential distribution
used in our first version of the switchboard model. The length
of a telephone call, for example, could follow a distribution
with a maximum corresponding to a most probable dura-
tion. Renewal processes can also be treated by means of the
stopwatch concept.

As a final example of a non-Markovian process, consider
the so-called self-avoiding random walk!®é. Suppose we have
a two-dimensional diffusion process with constant time of
flight and four possible directions of travel (see Figure 5),
but assume that the problem is redefined in such a way that
the particle can never visit the same place twice. This means
that the system must always keep track of the history of the
particle! 7.



The way to treat this problem is to consider the background
of regularly distributed points relative to which the particle
moves as part of the system. With each collision point we
can associate a state variable, and we can let the value of
this state variable change (for example, from O to 1) when
the particle passes the point. DYNAMO II is clearly not
well-suited to manage the coordination problem associated
with a simulation of this process. The important conclusion.
however, is that even such a drastically non-Markovian process
as the self-avoiding random walk can be turned into a state-
determined process through a proper definition of state space.

7. CONCLUSION

The viability of System Dynamics certainly depends on the
successful application of the method to significant real life
problems. It is also important, however, that the basic assump-
tions of the method are continuously reconsidered and that
the limits of applicability are clarified and, if possible, extended.
One way of doing this is to test the method on different
classes of relatively well understood problems, for instance,
from the natural sciences. As an example of this we have
considered the application of System Dynamics to a number
of simple stochastic processes. Our analysis has shown that
System Dynamics has a very general applicability to sto-
chastic systems, and that DYNAMO is fully equipped to
simulate most random processes. Some of the examples
that we have discussed have not involved feedback loops.
This is not a characteristic of stochastic processes, however,
but a reflection of the simplicity of the system we have
considered.
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