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ABSTRACT

Many feedback systems, when tested by applying exogenous
inputs, are able to maintain their characteristic behavior in
the face of moderate changes in their internal relations. The
robustness of behavior is usually due to the presence of
compensating feedback. One class of systems seems to show
a much lower resistance to external disturbances. The
behavior of systems of this type — unity-gain positive feed-
back systems — depends in detail on the exogenous influences
that impinge on the levels. In particular, the equilibrium state
that results from a given disturbance depends on the size and
duration of the disturbance. In this paper we show that these
systems have a constant of the motion which accounts for
their unique behavior when subject 1o exogenous disturbances.
As well, the constant of motion permits a clear definition of
the polarity of a large class of feedback structures.

System dynamics studies devote much effort to understanding
the relationships between structure and behavior. This effort
is inspired by the working hypothesis that the structure of a
system is the main determinant of its behavior over time —
at least in general terms. Certainly, the details of behavior
depend on the exact form and precise magnitudes of the
operating relationships. But it is often observed that the
behavior itself, as summarized in a verbal description, is
relatively insensitive to detailed knowledge of the relation-
ships. This hypothesis has served to permit the construction
of models of systems in which the precision of parameter
values is not as central to an effective understanding of system
performance as in other modeling paradigms.

The validity of this working hypothesis is challenged by the
existence of certain systems for which the behavior depends
in detail on the time history of exogenous influences on it.
In particular, such systems may have no unique equilibrium
state independent of the initial conditions. A striking example
is provided by the Salesman-Backlog loop in the classic
‘Market Growth’ paper.! For purposes of illustration, a
simulation of this sub-structure, independent of the Capacity
Expansion and Delivery Delay loops in the full model, is
performed by fixing the Production Capacity and Salesman
Effectiveness parameters to be constant. The Production
Cupacity is taken to be 12000 un/mo and the Salesman
Effectiveness is held constant for a succession of 20 month
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periods at values of 400, 167, 100 and 167 un/man-mo. The
equations necessary to replicate the simulation are found in
Appendix A and the result is shown in Figure 1.
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Figure 1: The Salesman-Backlog Loop Simulated with Salesman
Effectiveness Fixed for a Succession of 20-month Periods

The simulation starts from initial conditions far from the
‘equilibrium’ determined by the upper limit on Delivery Rate
and Orders Booked provided by the Production Capacity.
The production capacity limit imposes an equilibrium on the
delivery rate and the number of salesmen; when the rate of
orders booked is larger than the delivery rate, the backlog
continues to grow indefinitely so that the loop is not truly
in equilibrium (all level variables constant). The Salesman,
Backlog and Delivery Rate Average levels pass through a
period of growth, adjustment to equilibrium, decline and
adjustment to a different equilibrium respectively. The
equilibria result from fixing the Salesman Effectiveness at 167
un/man-month, when the revenues generated by salesmen are
just sufficient to support the number of salesmen employed.
Figure 1 shows that the equilibrium depends on the ‘initial’
conditions, the state at the beginning of each 20-month
period when the Salesman Effectiveness equals 167 un/man-
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month. In a state-determined system, there is nothing dynami-
cally unique about an ‘initial’ time. The behavior of the
system is the same regardless of how the ‘initial’ state is
created. The non-unique equilibria displayed in Figure 1
can equally well arise from imposing two pulse inputs on one
of the levels when the Salesman Effectiveness is 167. Any
exogenous input can be expressed as a series of pulses. This
structure is sensitive to the detailed history of exogenous
inputs impinging on it. This sensitivity, or non-uniqueness
of the equilibrium state, is not evident from the analysis
presented in the original reference. In this paper, we look at
a class of systems whose behavior over time, especially the
equilibrium state or the approach to equilibrium, appears to
depend on the detailed set of influences on the system rather
than on the general structure.

UNITY-GAIN MODELS

The class of systems in question was studied by Graham?® who
named them unity-gain, positive feedback systems. These
systems are represented by models in which the links between
levels are such that in tracing around the major feedback loop
that defines the system, the resulting relationships appear to
be deviation-enhancing (positive) rather than deviation-
suppressing (negative) but their behavior is goal-seeking. In
the ‘Market Growth’ example cited above, an increase in the
number of salesmen leads to an increase in the orders booked
and in the backlog, subsequently to an increase in the delivery
. rate and hence in the budget to hire more salesmen, and
hence to an increase in the number of salesmen. The initial
increase in salesmen leads to a further increase in salesmen.
By this reasoning, we seem to have a positive loop. Yet in the
two periods when the salesman effectiveness is set to 167,
the levels tend towards non-trivial equilibrium values — they
are goalseeking. The goal-seeking behavior, which is charac-
teristic of first-order, negative loops, contradicts our expecta-
tions based on the designation of a positive loop. The use of
causal loop diagrams to analyze behavior has been criticised
and defended by several authors®*®** but for these kinds of
models, the value of causal loop analysis is difficult to
establish on present evidence.

The behavior of this kind of feedback loop depends in part on
the open-loop step gain experienced by a variable in the loop
when a perturbation is applied to it exogenously. The open-
loop step gain is defined as the relative change in the value of
a level resulting from a step change in an input to the level.
It is determined by opening the loop at an input rate to the
level, introducing a step in the rate and observing the effect
on an equivalent rate variable as time increases to infinity °
The result of this process is the same as starting from a level
and tracing the effects of all the auxiliaries encountered once
around the loop while ignoring any delays. A more detailed
argument to support this assertion is supplied in Appendix B.
A simple-minded analysis based on tracing the effect of a
change in a variable around the loop would lead one to expect
amplification because the loop is positive. In the example
cited, the gain is determined by the ratio of parameters

SE*RS/SS

where
SE = Salesman Effectiveness (un/man-month), varied
RS = Revenue from Sales ($ /un) =12
SS = Salesman Salary ($ /man-month) = 2000

Under conditions of growth (up to month 20), the gain is
greater than | so that the number of salesmen and the orders
booked grow. When the gain is artbitrarily reduced to below 1
(but still positive, as in the period from month 40 to 60), the
system decays towards a goal of zero salesmen and orders.
When the gain is exactly +1 (in the periods from month 20
to 40 and 60 to 90), the system adjusts to an equilibrium
that depends on the state of the system at the time when the
gain became equal to unity. The singular feature of unity
open-loop step gain is the source of the sensitivity of behavior
that is typical of the systems of interest in this paper.

An important and subtle characteristic of these models is the
fact that they possess a ‘constant of the motion’, i.e. a linear
combination or weighted sum of the level variables in the
major loop that has its time derivative identically equal to
zero. The possibility of such a constant is suggested by the
goal-seeking behavior, and the relatively rapid adjustment to
equilibrium evident in Figure 1 when the gain is unity. The
implications of this feature are far-reaching as we shall see.

CONSTANTS OF THE MOTION

Though often unremarked, the existence of constants of the
motion is not unusual. One example, adapted from Mass® is
the simple Job-Vacancies and Employment model shown in
Figure 2. Without enquiring into the details of the auxiliary

l&g—» N S-S

VACANCIES | A
=

' !

N /
DURATION IR ING L LURATT L

OF RATE )<= = = = -QiF Ji
EMPLOYMENT ViCARCY
. |

\
y

v .
Z:? ‘ ! mngmam %é/\/

p—s

Figure 2: Job-Vacancies and Employment Model

functions, we can readily see that the rate of change of Job
Vacancies is the net result of the Termination Rate — the
firing of unsatisfactory employees increases the number of
job openings, and the Hiring Rate — the hiring of new
employees reduces the number of unfilled positions. The
rate of change of Employment is the converse, being increased
by the Hiring Rate and decreased by the Termination Rate.
It is evident that

E +JV =(HR — TR) + (TR — HR) =0

so that the combination (E + JV) is constant. In this case
the constant of motion is easily interpreted as the total
number of jobs available, both filled and unfiiled. The to1al
is constant in this model since no job creation or destruction
mechanism is included. If there is an exogenous component
in the Hiring Rate, for example a random input, the value of
the sum is indeterminate and depends on the time series of
exogenous shocks impinging on the system. In much the
same way, the Salesman-Backlog simulation showed an
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indeterminacy in the equilibrium values reached during the
two periods when Salesman Effectiveness was equal to 167.
Depending on the values of the levels when the effectiveness
was fixed so that the gain was +1, the directions and magni-
tudes of the adjustments varied from one 20-month period
to another.

The constant of motion in the Job-Vacancy Employment
model is something of an accounting identity and suggests
that other similar structures may be found where system
elements shuttle between a variety of levels while main-
taining the number of elements constant except for inputs
from sources exogenous to the positive loop under consi-
deration. Material recycling models’ and epidemic models®
that share this ‘characteristic are some indication of the wide
applicability of these structures.

However, constants of the motion appear in other models
that are not formulated as accounting identities. A simple
example will be instructive before returning to the more
complex and more general Salesman, Backlog, Delivery Rate
Average structure. The example chosen was proposed by
Graham? and describes a simple (not entirely realistic) model
to determine the selling price (producer’s price) of a product
based on the direct costs of production and a margin to cover
overhead and profit components. The DYNAMO diagram is
shown in Figure 3.
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Figure 3: Pricing Model — DYNAMO Diagrams

The equations of the model are recorded in Appendix C. In
this system, the price P at any time is used to determine the
gross margin GM by subtracting the direct costs C, assumed
to be constant for purposes of this example. The gross
margin is smoothed to determine an average or ‘traditional’
gross margin TGM which is simply an exponential smoothing
over a period TAM, the time to adjust the margin. The
traditional margin is subsequently used to determine the
desired or ‘indicated’ price IP by adding to the traditional
margin the direct costs of production. The indicated price
when compared to the current price is used to determine
any change in price needed to bring the current price in
line with the indicated price. The time period over which any
change in price is effected is the time to adjust price TAP.

A little thought reveals that the model can easily be reformu-
lated in terms of new level variables which have the same
dimensions, namely gross margin GM and traditional gross
margin TGM. The algebraic steps are sketched in Figure 4.
The units of gross margin and price are both ($ /un).
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P =1P-P = TGM+C-P = TGM-GM = (P-C) = GM
TAP TAP TAP TAP

TGM = GM-TGM =-TGM+GM
TAM TAM

Figure 4: Pricing Model — Redefinition of Levels

However, gross margin and traditional gross margin are
concepts which are closer in meaning than are price and tradi-
tional gross margin. The re-definition of variables is inspired
by a desire to develop a reduction in the number of concepts
needed to understand the behavior. We note that a re-defini-
tion in terms of price and indicated price levels could equally
well have been used.

The simple trick of rewriting the model in terms of variables
which are dimensionally equivalent reveals that, after muiti-
plication by TAP and TAM, the rates of change of GM and
TGM are equal and of opposite sign. Thus the rate of change
of the sum .

TAP*GM + TAM*TGM

is zero and the sum is a constant of the motion. If there are
no exogenous influences on the levels, the sum remains
constant. The value of the sum is given by the initial values
of the levels GM and TGM. If GM equals TGM, both levels
stay constant and the above sum is trivially constant. If GM
is not equal to TGM initially, the two variables adjust to some
compromise, equilibrium value while the above sum remains
constant.

DIMENSIONAL IDENTITY IN LOOPS

The fact that the levels can be redefined so that they all have
the same dimensions is a feature of all loops that is extremely
important. Any level in a loop can be chosen to specify the
dimensions of a standardized level variable for the loop. The
other levels can be re-defined to be dimensionally equivalent
by merely multiplying by appropriate conversion factors
taken from the auxiliary relations in the loop. When the gain
is exactly 1, any change in scale or dimensions introduced by a
(possibly non-linear) auxiliary relation must be reversed or
undone by subsequent auxiliaries in tracing once around the
loop. The net steady-state effect around the loop must be
equivalent to an identity both dimensionally {as in any loop)
and physically.

PHYSICAL IDENTITY IN UNITY-GAIN LOOPS

The physical identity is subtle and interesting. An open-loop
step gain of +1 means that in tracing the change in the magni-
tude of a variable (induced by a prior change in that variable)
once around the loop, the resultant change due to the
auxiliaries is equal in magnitude to the original. The addition
of any number of units to a given level is simply preserved in
the level. This description ignores the transitory effects due
to the delays as befits an equilibrium analysis. These effects
play an important role in determining the final values of the
different levels in equilibrium following an impulsive change in
one of the levels in the loop but not the value of the constant
of the motion.




Unity-gain loops are ‘sensitive’ to the effects of exogenous
inputs since the levels in the loop will tend to preserve any
changes impinging on them from outside the loop. Figure 1
demonstrates this sensitivity of unity-gain loops. Laplace
transform theory shows that non-equilibrium initial values
and impulse inputs are equivalent means for stimulating
behavior modes. The difference in equilibrium values reached
during the two periods when the gain is +1 is due to the
difference in ‘initial values’ of the levels, at the instants when
unity gain is imposed.

A GENERIC STRUCTURE FOR UNITY-GAIN POSITIVE
FEEDBACK LOOPS

The examples of constants of the motion that have been
dealt with so far are either trivial (the Job-Vacancy-
Employment accounting identity) or specialized (the Gross
Margin-Traditional Margin case of linearly linked information
delays). We return to the Salesman-Backlog model which has
a more general structure of material and information delays
linked by nondinear auxiliaries. Similar examples may be
found as sub-models in the References.®*®*! These are
sufficient to suggest that there is a generic structure, usually
embedded in a larger model, and that an understanding of
its characteristics is of some importance. The generic structure
in question is illustrated by the operator-matrix equation
shown in Figure 5. The equation is derived from re-writing
the active DYNAMO equations in Appendix A in standard
state-vector form. A slight modification of notation is made
to accommodate the non-inear function PCF. To avoid using
clumsy parentheses to indicate general functional dependence,
a ring symbol (o) is introduced. In this example, the equa-
tions in Appendix A allow us to write

PCF(BL/12000) = PCFoBL

S -1/SAT 0 RS/(SS*SAT) S -
BL |=| SEM -PC*PCFo o) BL
DRA O  PC*PCFo/DRAT -1/DRAT DRA

Figure 5. Salesman-Backlog Model Operator-Matrix Form
The equations show a structure composed of a linked set of
three delays if we note that the non-linear function PCF is
piece-wise linear in BL with positive slope. The off-diagonal
terms which link one level to its predecessor in the loop are
all positive so that the major loop is indeed positive. The
generic structure, of which this is only an example, has:

(i) negative terms on the diagonal to represent an
outflow from a level which depends on the amount in
the level. This is a generalization of linear or expon-
ential delays. The terms on the diagonal may be non-
linear functions of the level subject to the condition
that when the level is zero the function is zero also.

(ii) non-zero terms only below the major diagonal and
in the ‘north-east’ corner to form the links between
levels for the major loop. Alternative forms are found
by changing the order of writing the levels, but these are
clearly equivalent since the ordering of the levels is of
no significance for the dynamics.

The reason why this structure can be considered generic is
evident. Physical consistency requires a delay-type structure:
if there is nothing in a level, the outflow must be zero. The
links between levels are necessary to form the major loop.
All other off-diagonal terms represent sub-major loops, of no
interest to this study. The structure is a physically consistent,
major loop of general form.

CONSTANT OF MOTION — DERIVATION

A constant of the motion is a linear combination of the levels
and corresponds to adding together multiples of the rows in an
operator-matrix of the sort shown in Figure S, so that the
resulting sum is identically zero. The possibility of finding a
constant of the motion in such a structure is suggested by the
observation that each column contains only two entries,
and they have opposite signs. Thus, some method of adding
rows together could result in a right-hand side which is zero.
A procedure to capitalize on this observation, when the equa-
tions are written in a form like Figure 5, is the following:

— Start with the last row, look for a multiplier for the
first non-zero element such that it cancels the term in
the same column in the row immediately above.

—Continue in the same way up the rows until you reach
the first. Apply the multipliers found this way to the
first row. If the loop is unity gain, the last term in the
first row will cancel the last term in the last row.

For the Salesman-Backlog model, it is easy to see that the
procedure leading to the combination

COM = DRAT*DRA + BL + SAT*SEM*S
gives the equation
COM = (SEM*RS/SS — 1)DRA

Thus for the values of RS and SS given previously, we see that
when

SEM = 166.6 = 167

the rate of change of the above linear combination of the
levels is indeed identically zero.

Alternatively, one can specify a linear transformation of the
vector equation in Figure § that accomplishes the same result
as the procedure described above. The transformation is
simply to multiply the vector equation by the vector

01 0

(SEM, 1,1) /SATO 0
0 0 DRAT

): (SEM*SAT, 1, DRAT)

It is a very special feature of this model, not true in general,
that the function PCF has no effect on the constant of
motion. In general, the delay time for any level will appear in
the constant of motion. The pricing model shows this feature. -
In the Salesman-Backlog model, the delay time for the back-
log is the reciprocal of the slope of the function PC*PCFo.
The delay time for the Backlog also appears in the link
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between Backlog and Delivery Rate Average as part of the
major loop. This feature permits an exact cancellation of the
PCFo terms in the rate of change of the constant of motion.

The derivation of the constant of the motion shows the
unique nature of unity-gain, positive feedback loops. The
constant exists only when the positive major loop is exactly
compensated by a minor negative loop. 1f the product of the
internal gain parameters SEM*RS/SS is not exactly equal
to +1, the rate of change of the ‘constant’ is always propor-
tional to one of the levels in the loop. The time derivative
of the ‘constant’ is then either positive (gain>1) or negative
(gain<1). The general form of the constant of the motion
is developed in a subsequent paper,12 which it is hoped
will be published in a forth-coming issue of DYNAMICA.
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Figure 6: Behavior of the Constant of the Motion of the
Salesman-Backlog Loop: DRAT*DRA+BL+SAT*SEM*S

Figure 1 shows the behavior of the individual levels when the
Salesman Effectiveness is held constant at certain values.
Figure 6 shows the behavior of the ‘constant’ under the same
conditions. The fact that the ‘constant’ is so sensitive to
changes in the gain means that it is an unambiguous indicator
of the underlying dynamics of the system, capable of rapidly
distinguishing growth, stagnation and decline phases before
they are evident in all the levels.

FURTHER OBSERVATIONS

Equilibrium

Because each level in the system is in a delay structure, each
level has a tendency to adjust to an equilibrium. The existence
of a constant of the motion means that at least one equili-

brium exists. This follows from the fact that the constant of
the motion is trivially equal to its value at the initial time, and

100

that the delay structure keeps all levels bounded in magnitude.
The existence of a constant of the motion means that if a level
is perturbed (or if it is not at its equilibrium value) all the
other levels must adjust in such a way as to preserve the
constant. of the motion (whose time rate of change is zero).
By acting to preserve the constant of the motion, a system
may nevertheless show some apparent arbitrariness in its
equilibrium state since different levels may compensate by
different amounts and in different directions for the effects of
exogenous pulse inputs (or equivalently, for the fact that some
or all of the states are initially not at their equilibrium values).
The adjustment process and the equilibrium are not in fact
arbitrary. The response to a given step input is deterministic
in the sense that if the model starts in the same initial
condition it always approaches the same equilibrium. How-
ever, if it starts from differing initial conditions, the equilibria
will differ. If the initial conditions are close to each other so
also will be the equilibrium states. The pathological case of
exactly compensating, unlimited increases and decreases in
components of the constant of motion is seen to be impossible
because the delay structure acts to return any runaway levels
to equilibrium.

Stability

An equilibrium of a unity-gain loop is stable but not asymp-
totically stable, i.e. the equilibria resulting from two initial
conditions that are close to each other are also close to each
other but do not tend to approach each other over time.
In Figure 1, there is no tendency for each level to approach
a common limit for that kind of level when the gain is unity.
Equally well, if a model is started from the same initial
conditions but is exposed to two slightly different streams of
exogenous influences, the time paths of the two simulations
will be approximately the same but these paths will show no
tendency to converge on some unique path.

One can demonstrate that small differences in initial condi-
tions give small differences in equilibria by simulating the
Salesman-Backlog model with the same sequence of values of
Salesman Effectiveness (400,167,100,167) applied over the
periods (0,21), (21,41), (41,61), (61,90) and (0,19), (19,39),
(39,59), (59,90). The results are shown in Table 1 where the
final values, at TIME = 90, of each level and the constant
of motion are recorded for each case.

First Backlog  Salesmen Delivery  Constant
Interval Rate of Motion
. Average  (/1000)
(0,19) 7433 22 3717 8548
(0,20) 7827 23 3913 90.01
0,21) 8240 25 4120 94.76

Table 1: Sensitivity of the Unity-gain Response of the
Salesman-Backlog Model to Variations in the Initial
Conditions.

Random or Unknown Inputs

In the presence of random or unknown inputs, the equilibrium
levels vary in an unpredictable manner and show behavior
that appears to be independent of the structure. If the gain
is >1 or <1, random inputs may mask the resulting growth or
decay without destroying the underlying behavior mode. If
the gain is +1, random inputs destroy any equilibrium. As




the preceding analysis shows, the behavior of the levels is not
entirely independent of the structure. The structure preserves
a constant of the motion which varies in an unpredictable
manner under the influence of unknown inputs. The constant
of motion has statistical characteristics more closely related
to those of the input than are those of any of the levels in the
loop. This can be seen in the Salesman-Backlog model if we
add a random input, u; (i = DRA, BL, 8), to each level equa-
tion. The equation for the constant of motion becomes

COM = (SEM*RS/SS — 1)DRA + (DRAT*uDRA+uBL+SEM*SAT‘uS)

Thus, for unity-gain loops, the constant of motion is the
integral of a linear combination of the random inputs. If the
gain is not unity, the constant of motion is determined by the
Delivery Rate Average as well as the random inputs. In this
case the auto-correlation of DRA and the cross-correlation of
DRA with Salesmen and Backlog will affect the distribution
of the constant of motion. The implications of this comment
for estimation and control of models containing unity-gain
loops remains to be determined. A physical model that is
suggestive of some features of unity-gain positive feedback
loops is described in Appendix D.

Genericity

The generic nature or ‘genericity’ of a structure is a compound
of its ubiquity, simplicity and transparency. A structure is
called generic because it represents some elements found in
many different systems, it has a relatively small number of
levels and its small number of behavior modes depend on only
a few combinations of parameters. The dependence of the
above analysis on the precise value of the gain around the
major loop being unity raises some doubt as to the wide
applicability or genericity of the structure. The structure of
delays, both material and information delays linked by non-
linear auxiliary relations, is quite general. The positive
polarity of the major feedback loop is common in systems
characterized by a tendency to grow under more or less strict
control due to sub-major negative loops. The occurrence of
systems with gain of precisely +1 maintained over long periods
of time is less probable except for the case of bookkeeping
identities. However, we consider unity-gain loops to be a
special case of a structure of non-linear delays linked in a
positive major loop. This structure can rightly be called
generic since it appears in many models of very disparate
systems, it has a small set of behavior modes and its
behavior is determined by a single, intuitively obvious para-
meter, the open-loop step gain.

Structure and Behavior

Structures of the sort we have described allow us to focus
attention on those changes in structure, as embodied in the
internal gain factors such as SEM and RS/SS, that change the
behavior of the constant of the motion. One should seek to
understand the behavior of complex systems by classifying
the behavior of simpler, generic systems while making use of
the minimum number of concepts. The Salesman-Backlog
model shows that it is not always necessary to linearize the
model to derive useful insights into the effects of critical
parameters on behavior, if one deals with the appropriate
generic structure. This paper can be seen as an argument in
favor of analyzing systems in terms of generic structures rather
than in terms solely of feedback loops.

The dependence of the rate of change of the constant of the
motion on the open-loop, step gain allows us to define clearly
the polarity of a structure in a way that is useful for under-
standing behavior:

The polarity of a multi-loop, finite step gain structure
contained within a major positive feedback loop (as
determined by the product of signs around the loop) is
defined by the derivative of the constant of motion
with respect to some level in the major loop.

The derivative in question is proportional to (open-loop step
gain — 1) so that the polarity is positive if gain>1, negative
if gain<l, and neutral if gain=1. Associating the polarity
with the structure, rather than with a loop, is somewhat novel
but is clearly justified by the generic nature of the structure.
The advantages of this association are to preserve our intuition
about the behavior of structures with given polarity. The
association works only for the case of structures incorporating
a positive major loop, i.e. for which the gain>0. When the
gain<0, the polarity of the major loop is negative and a simple,
intuitive and useful classification of behavior modes for the
structure is no longer possible. While the generic structure
described above shows overall decay behavior in the case of
gain<0, the distinction between pure decay and decaying
oscillations is not illuminated by reference to the ‘constant’
of the motion.

The case of a positive major loop containing one ‘bare’ inte-
grator (or more) is not included in the class of generic
structures since the open-loop step gain is infinite, and there is
no constant of the motion. The limiting case of a positive
major loop composed entirely of integrators presents some
interesting abstract features® but is neither realistic nor
useful for understanding the behavior of the generic struc-
tures considered in this paper. This limiting case and the
confusion it has engendered are strong arguments for making
realistic generic structures the focus of the analysis of
structure and behavior.

Management Implications

A knowledge of the constant(s) of motion in a model is of
some use in modeling real systems since it reveals what sort of
structures are needed to create or destroy the constants of
the motion. Such information is useful for managing real
systems since it shows:

(i) the conditions under which sub-models or sub-
sectors are rendered independent of other sectors. When
the gain is unity, the Salesman-Backlog structure does
not exert any stress on other loops. That is, it does not
actively determine the goals of other loops in the full
model. It reacts to influences arising from other loops
by changing its constant of motion instantaneously
and adjusting its levels to be in an equilibrium consistent
with the current value of the constant of motion.

(ii) the conditions under which a fundamental behavior
mode of growth or decay is achieved. When the gain is
not unity, the Salesman-Backlog structure has a definite
effect on the behavior of the model as can be demon-
strated by setting SEM at various values in the full
‘Market Growth’ model.
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In either case, the desired effects can be achieved by attending

to only a few critical parameters. Certainly, the critical para-
meters determining the gain can be found without reference
to a constant of the motion. The concept of the ‘constant’
and its associated structure is useful for decomposing a struc-
ture into a core set of major and minor loops whose behavior
is understood, and a remainder whose influence on the generic
structure can be qualitatively assessed.

The existence of a constant and the attendant equilibrium of
the levels means that a stagnating system may have some
potential for improvement. A manager can choose his equili-
brium within limits imposed by the compensating action of
negative feedback loops outside his direct control. In the
Salesman-Backlog model, the equilibria shown in Figure 1
are well within the maximum Salesmen and Delivery Rate
Average levels imposed by the capacity limit of 12000 un/
month. In the full model, the market responds in such a way
that the gain of this loop varies around unity. Although the
market reaction masks the sensitivity of the unity-gain
condition, it does not justify passively accepting the long-
term decline in capacity that arises under some management
policies. The possibility that a unity-gain structure exist in a
larger context should only focus the search for effective
control strategies. :

Further, one can suggest that having located the unity-gain
loops in a system, one should look elsewhere for high-
leverage policies to change the behavior. Unity-gain loops do
not resist or defeat exogenously imposed inputs so that they
are unlikely to be the source of persistent difficulties exempli-
fied by undesirable oscillations or long-term stagnation.

An alternative proposition is that a manager should organise
his systems to create unity-gain structures so as to increase
his control by increasing the sensitivity of the system to
specific inputs. The implementation of this control strategy
depends on being able effectively to isolate a sub-system from
uncontrolled influences. Once isolated, the policy design
problem concentrates on making the sub-structure responsive
to controlled inputs. The isolation approach is distinct from
the robust control approach often favored in system dynamics
studies. In the isolation strategy, the robustness is concen-
trated in the structure that permits isolation. This strategy
is not essentially different from the search for high-leverage
policies which must be applied with sufficient consistency to
achieve their intended effect. The unity-gain structure is
ano}};er tool to be added to the conventional system design
kit.

A high-sensitivity, high-risk control strategy of the isolation
type is similar to a proposal by Beer'® in the context of a
discussion of catastrophe theory models. The sensitivity
of the constant of motion is due to a singularity of the
operator-matrix; the determinant of the (linearized) matrix
is zcro when the gain is unity. This is a linear phenomenon,
unlike the nonlinear singularities of catastrophe theory.

FURTHER DEVELOPMENT

The treatment of specific cases in this paper somewhat
obscures the general structure of the sgstems under considera-
tion. It is left to a subsequent paper’? to develop the general
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case in a more abstract treatment. Some of the issues raised
for future study are merely sketched here.

The behavior of the constant of the motion and the fact that
its constancy depends on the gain being exactly unity raises
the question: What is the behavior of a multi-loop system
whose gain may vary around unity at different periods in its
evolution. The one-level example of S-shaped growth of a
population constrained by limited resources is the simplest
such system but the treatment of more complex systems is
not complete.

The constant of the motion is found by applying a linear
transformation to the operator-matrix. It is an open question
under what conditions a constant of the motion can be found
for more general structures. Studies of non-inear models of
interacting populations show that such a constant exists fora
system of negative sub-major loops.’® The class of systems
studied is a generalization of the Lotka-Volterra or Predator-
Prey model. A major loop is not necessary for the existence of
the constant of the motion. If a major loop does exist, it does
so in the form of a positive and a negative major loop which
are always simultaneously present. A major loop is rarely
encountered in the ecological systems that inspired the
generalization since it corresponds to interaction between
widely disparate trophic levels. However, the existence of the
constant of motion, and the restriction to the physically
interesting case of non-negative levels permit proofs of
periodicity of two-level systems, of disappearance of species
and of statistical properties of populations described by the
class in question. Preliminary analysis of the appropriate
generalization of the unity-gain structure discussed in this
paper indicates that

—Positive feedback loops possess a number of constants
of the motion equal to the number of levels in the major loop.
These constants appear to be simply re-definitions of the
constant of motion in units corresponding to the dimensions
of each level.

—Negative feedback loops do not possess constants of
the motion in the sense described here so that the concept
may be useful primarily for classifying the dynamic nature of
multi-loop systems embedded in a major positive loop.

--The existence of the constant of the motion seems to
imply that in some sense the system is of lower order (has one
state less) than the original system. Useful implications that
can be derived from this statement remain to be discovered.

—In some cases the rate of change of the ‘constant’ of
the motion, as constructed by the procedure proposed above,
depends on only one or a small number of levels (and hence
is not strictly constant). The use of this feature for control
or estimation of the model is an open question.

SUMMARY

By means of several reasonably representative examples of
unity-gain positive feedback loops, we have shown that a
constant of the motion can be found and that such a constant
is a sensitive indicator of the dynamic nature of some multi-
loop systems. Some implications of this sensitivity for
understanding and controlling such systems are discussed.




" The insights from this study, such as they are, are best applied
to understanding that positive major loops may show a
tendency to seemingly erratic behavior when the gain around
the loop approaches unity while the loop is being perturbed
in a random or, at least, uncontrolled way. The ‘constant of

APPENDIX A:
DYNAMO Equations for the Salesman-Backlog Model

L S.K=S.J+(DT) (SH.JK) SALESMEN
N $=10
R SHKL=(IS.K-SK)/SAT SALESMAN HIRING
C SAT=20 SALESMAN ADJUSTMENT TIME MONTHS
A IS K=B.X/2000 INDICATED SALESMEN
A B.K=DRAK*12 BUDGET
L DRA .K=DRA.J+(DT) (DR.JK-DRA.J)/DRAT
DELIVERY RATE AVERAGE
N DRA=DR
C DRAT=1 DELIVERY RATE AVERAGING TIME MONTHS
R DR.KL=12000*PCF.K DELIVERY RATE UN/MO
A PCF K=TABHL(TPCF,DDM K,0,5, .5)
PRODUCTION CAPACITY FACTOR
T TPCF=0/.25/.5/.67/.8/.87/.93/.95/.97/.97/1.0
A DDM.K=BL.K/12000 DELIVERY DELAY MINIMUM
L BL.K=BL.J+(DT) (OB.JK-DR.JK) BACKLOG UNITS
N BL=8000
R OB.KL=SEM.K*S.K ORDERS BOOKED UN/MO
A SEM .K=400+STEP(-233.33 UGT1)+STEP(-66.67, LGT)
X +STEP(66 67,UGT2) SALESMAN EFFECTIVENESS
C UGT1=20,LGT=40,UGT2=60 GAIN STEP TIMES
A COM.K=DRAT*DRA K+BL.K+SEM.K*SAT*S.K
CONSTANT OF MOTION
SPEC DT=0.1/LENGTH=90/PLTPER=3
PLOT S=S/BL=B/DRA=D
PLOT COM=C
RUN
APPENDIX B: .

Open-loop Step Gain

For finite open-loop step gain systems, the loop can contain
only auxiliaries and delay elements. In particular, no pure
integrators can be included since they only accumulate input.
As time approaches infinity after application of an input step,
the level grows without limit and the gain is infinite. Simple
integrators are usually a modelling short-cut which should be
replaced by a delay element with a long delay time. The
limiting value is derived from the Final Value theorem of
Laplace transforms. The output C(s) of a system G(s) with
input R(s) is

C(s) = R(s) G(s)

and the limit as time approaches infinity is
lim C(t) = lim s(R(s) G(s))
t—>00:. s->0
For a unit step input
R(s) = 1/s.
Thus lim C(t) = lim G(s)
t—> oo s—>0
Note that for a unit impulse input,
R(s) = 1
and C(s) = 1.G(s)

the motion’ is a more sensitive indicator of the underlying
nature of the loop dynamics than individual levels as the
results of the ‘Market Growth’ model show. This sensitivity
allows us to characterize structures containing positive major
loops as being of positive, negative or neutral polarity.

In this case, the limit as s—>0 is the same as the step response;
however, the limit is not the final value of the impulse
response. The final value of the impulse response is rather

lim s(1.G(s))
s—>0

which for systems composed of a cascade of delays and
auxiliaries is zero.

APPENDIX C:
Pricing Model -DYNAMO Equations

P.K=P.J+(DTXCP.JK)
P=100
CP.KL=(IP.K-P.K)/TAP CHANGE IN PRICE (§ /[UN-WEEK)
GM.K=PK-C GROSS MARGIN

TGM.K=TGM.J+(DT) (GM.J-TGM.J)/TAM

TGM=GM TRADITIONAL GROSS MARGIN ($ /UN)

IP K=C+TGM.K INDICATED PRICE ($ /UN)

C=80 COST (§ /UN)

TAP=4 TIME TO ADJUST PRICE WEEKS

TAM=2 TIME TO ADJUST MARGIN WEEKS

PRICE (§ /UN)

aNQFZUPRZT

APPENDIX D

Interpretation of the Constant of Motion—The Circulating
Content

The interpretation of the constant of the motion remains
somewhat problematic. In the Job-Vacancy Employment
example, the constant was simply the total number of jobs
available, whether filled (Employment) or not (Job-
Vacancies). In the Pricing model, a strenuous abuse of
language would permit us to describe the margins as a rate of
spending per unit of product, either real (using the Gross
Margin or equivalently the Price) or desired (using the
Traditional Gross Margin or equivalently the Indicated Price).
Then the constant of motion is the amount of cash per unit
‘circulating’ around the loop so that each dollar spends TAP
time units in the level GM and TAM time units in the level
TGM.

The mental model is of a closed tube (representing the major
loop) filled with a circulating fluid (the kind of fluid described
by the dimensionally similar terms of the constant of motion).
The length of the tube is given by the sum of the delay times
around the loop and the amount of time a unit of the fluid
spends in each level is given by the delay time associated with
that level. Thus each term in the constant represents the
amount of fluid contributed by the corresponding level to
the total equilibrium amount of fluid — the value of the
constant or the circulating content. To complete the model,
the rate of flow through each level is given by the product of
gain factors and the level (excluding the delay time for the
level from the gain factors).
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For models consisting of linked material delays, the idea of a
certain amount of material circulating among the system levels
is reasonably cogent. Although this interpretation is some-
what strained in application to systems of mixed information
and material delays, it does suggest why unity-gain positive
feedback loops are sensitive to exogenous disturbances. The
non-viscous and incompressible ‘fluid’ that forms the circu-
lating content of the loop has no internal damping or shock-
absorbing properties so that it reacts instantaneously to
externally imposed inputs.

Applying this interpretation to the Salesman-Backlog model,
the ‘fluid’ consists of units of backlog and the flow rate
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