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ABSTRACT

It is sometimes argued that discrete and random events are
very hard to model in the DYNAMO and DYSMAP syntax,
and that the logical facilities in these languages are inferior to
those of FORTRAN. This paper demonstrates, by examining a
rather complicated modelling problem, that neither of those
propositions is necessarily correct. It is shown that, once one
understands the underlying problem, DYSMAP is usually far
more flexible, efficient, and friendly to the user than is
FORTRAN.

A subsidiary aim of the paper is to demonstrate how equations
can be built up, piece by piece, to produce required dynamic
behaviour, rather than simply emerging somehow from the
mind of the modeller,

Background

In underground coal mines, the coal is dug by a mining
machine, and carried to the surface by a series of conveyors,
via intermediate storage bunkers. In a moderately large colliery
there would be several such machines working simultaneously
in different parts of the mine and, if a storage bunker becomes
too nearly full, or more machines will have to be stopped.
If, on the other hand, bunkers become empty, it is more
difficult to maintain an adequate flow of coal to the prepar-
ation plant on the surface, or perhaps, to an adjacent electrical
power station.

Bunker control is, therefore, an important aspect of routine
colliery management, but is made more difficult by conditions
at the coal face. A mining machine may easily be capable of
producing 500 tons/hour on average, but this could vary trom
300 to 700 tph, depending on the hardness of the coal, the
roof and floor conditions, the skill of the operator, and many
other factors. Apart from that variation, the machine may it-
self be producing or stopped. The machine may stop because it
has itself broken down. because the conveyor which it feeds
has broken down, or because locally adverse geological

DYNAMICA Volume 6. Part 1. Summer 1980.

conditions, such as a weak roof, stop the machine until they
can be corrected. Collectively we shall refer to all such stop-
pages as ‘Breakdowns’, and we shall suppose that the
machine’s conveyor is capable of handling the maximum rate
of output from it, so that machine stoppages are not caused by
inability to handle production peaks, i.e. stoppages are random
exogenous events, and not state-determined.

We require, therefore, to handle no less than three random
processes in the model. The first is the random variation in the
output rate, which may be regarded as white noise. The second
is the discrete change of state from production to breakdown
and back again. The third is the length of the production run
or the breakdown which may most realistically be regarded as
Normal processes, each with its own mean and variance. To
handle such complexity in an event-based simulation language
such as CSL, would be fairly challenging, but to do so in
DYSMAP would often be regarded as beyond the capacity of
the language. We shall show that such is not the case.

Apart from these processes, we have to incorporate the fact
that the machines only operate during certain shifts, totalling
12 hours out of the 24 hours of each day. For the sake of
brevity, we shall not allow for the effect of weekend breaks,
though the extension of the method will be fairly obvious.

We require, therefore, to model random events on a coal face,
to produce a coal face sector for a model of bunker control
policies.

Naturally, if the bunker control policy is inadequate. or the
bunkers are just too small, the coal-face machinery will have to
be stopped until the surplus coal can be got away. Such stop-
pages are, however, state-determined and are not included in
our model of randomised production, since our purpose here
is to explain some equation-writing techniques, and the
analysis of bunker control policies is dealt with in
Wolstenholme (1980).



Although we have set the example in a coal-mining context,
similar phenomena occur in many other production situations,
especially in other types of mine.

The need for randomisation of production is clearly estab-
lished in this particular case, but should be carefully justified
in others. One should not include random production in a
model merely because it looks impressive, or adds flavour to a
model.

Details
The details assumed in this paper are:

1) The mine operates with two production shifts in each 24
hours. The first is from 6 a.m. to midday, the ‘day’ shift,
and the second from 2 p.m. to 8 p.m., more reasonably
called the ‘afternoon’ shift. (i.e. 0600 — 1200 and 1400 —
2000). If the machine is broken down when a shift ends,
we assume that the maintenance crews can repair it before
the start of the next.

2) The length of unbroken production periods is normally
distributed with a mean of 1 hour, and standard deviation
0.1 hours, and the length of breakdowns is similarly distri-
buted with mean 0.5 hours and standard deviation 0.05
hours.

Actual mining machinery has a far better performance
record than that, but we wish to produce a sufficient
number of events in a shift to test the equations

thoroughly.

Methodological Comment

DYNAMO and DYSMAP are nearly always regarded as con-
tinuous simulation languages, and are usually firmly con-
trasted with the event-based languages, such as CSL. In this
example we show how, with a little ingenuity, one can pro-
duce events within continuous languages. We do, however,
suggest that it is important to use the tool for the job and
not to force DYNAMO into doing something it is not designed
for, when events have to be treated on a large scale and as the
prime focus of attention. In this example, we are considering
the problem of control in a system which has both continuous
and event-based processes in it, and, for that kind of problem
DYSMAP is ideal for the control and continuity aspects, and
~a- <" qan I, the iscontinuous events, as we shall show.

Timing of Main Events

We first calculate the time within the working cycle, because
we are dealing with a cyle which may repeat many times in a
given LENGTH.

A TDIFF.K=TIME.K—CEND.K (1)

L CEND.K=CEND.J+DT*PULSE(CDUR/DT,CDUR,CDUR)
(2)

N CENDD=0

TDIFF = (HRS) Time within working cycle (the cycle is
usually a day)

CEND = (HRS) Time at which current cycle started

CDUR = (HRS) Cycle Duration. Usually, CDUR = 24.
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Next, we define the Face State to be 1 when a shift is present,
and O otherwise.

A FST.K=CLIP(1,0,TDIFF.K,DSST)-CLIP(1,0,TDIFF K DSE)

+CLIP(1,0.,TDIFF.K,ASST)-CLIP
(1,0,TDIFF.K,ASE)  (4)

FST = (1) Zero-One Variable for Face State

DSST = (HRS) Time at which day shift starts

DSE = (HRS) Time at which day shift ends
ASST = (HRS) Time at which afternoon shift starts
ASE = (HRS) Time at which afternoon shift ends.

The four parameters DSST, DSE, ASST and ASE, are
~xpiessed in terms of a 24 hours clock!

Some mines produce coal on five days per week, feeding the
product direct to a power station, which works on seven days.
If this is significant, equation 4 can be modified by multi-
plying the whole thing by another zero-one variable, WST, for
Week State. This can be provided by creating two variables,
TWEEK and WEND, exactly corresponding to TDIFF and
CEND in equations 1 to 3, and then defining WST, by a CLIP
function.

Notice that defining variables such as FST by using suitably
timed PULSE functions requires care. The PULSE requires 1
DT to take effect so that the change of state must start 1 DT
before the required time, or timing will be that much in error.

Equations for Machine and Face Output
The machine’s randomised output is easily defined in terms of
its nominal output of 500 tph, and sampled NOISE.

A OUT.K=NOMOUT*(1+FAC*SAMPLE(NOISE(3),
NPERD,0))  (5)

ouT = (T/HRS) Randomised Output of Machine

NOMOUT = (T/HRS) Nominal Qutput of Machine

FAC =(1) Scaling factor for random variation

NPERD =(HRS) Noise Period

The reason for the SAMPLE function is that we do not want
the production rate to change each DT. The value of DT is
chosen to be a parameter of the simulation calculation, not of
the process being simulated. In this case, the soft coal which
might produce the higher output rate could extend for 30 or
40 metres and could take half an hour to cut. In such a case
NPERD would be set to 0.5 (hours), whereas DT might have
to be very much smaller to obtain satisfactory dynamics from
the delays (see Coyle, 1977). The parameter FAC is to force
the NOISE to be in the correct range. NOISE samples between
-0.5 and +0.5 so that, since NOMOUT = 500, the minimum
and maximum outputs would be 250 and 750 tons/hour
respectively. We require 300 and 700 which means that FAC
has to be 0.8. For a fuller discussion see Coyle, 1979.

The Face Output can then be treated as the randomised out-



put produced from equation 5, multiplied by the Face State,
so that the machine does not produce when the face is not
working, and by the machine state, to prevent production
when the machine is broken down.

A FOUT.K=OUT.K*MST.K*FST.K (6)

Now, the purpose of the NOISE in equation 5 was to represent
random encounters with hard coal etc. which produce output
variations. Equation 5 continues to produce such stochastic
effects, even though the result might be suppressed in equation
6 because no shift is working, or because the machine is
broken down. One might, therefore, face the daunting pros-
pect of altering the noise period in equation 5 to allow the
sampling of coal variation to start again at the point where it
left off when the machine stopped operating. Although that
could be done, it is unnecessary, because NPERD will
generally be rather small, so the Law of Large Numbers
(popularly miscalled the Law of Averages), ensures that we
shall get an adequate sample of the random production rates,
while the machine is working, and we shall not bias the result
beyond the inaccuracy of the data by allowing the sampling to
continue even when the machine is not, in strict accuracy,
working.

It is always important to judge whether or not additional fine
detail is really going to do more than add a purely illusory
respectability to a model.

Duration of Machine States
It is easy to calculate the length of production runs and break-
downs

A LBD.K=DT*INT(NORMRN(0.5,0.05)/DT) (7)
A LPR.K=DT*INT(NORMRN(1.0,0.1)D/T) (8)
LBD = (HRS) Length of a Breakdown
LPR = (HRS) Length of a Production Run

In both equations, a random sample is taken from the normal
distribution with appropriate parameters. This is divided by
DT to convert the time into time steps, and the integer
part function INT ensures that the event will last an exact
number of DTs. The multiplication by DT converts back into
time units. The point of this procedure, which very slightly
distorts the normality of the distribution, is to ensure that,
when we use the SAMPLE function in a later equation, the
sampling does not occur in the middle of a DT which will
make the checking of the model easier. The purist who does
not wish to adulterate his normal distribution can reduce the
distortion by adding 0.5*DT into the parentheses of the INT
function.

At this point, we have to be very careful and exact in our
approach, as there are several possibilities. We start by realising
that, within a shift, the machine can only alternate between
States | and 0. because a production run is followed by a
breakdown, not by another production run. If, therefore, we
had a variable called PERD, which would alternate between
the production duration and the breakdown length, as
randomly sampled by equations 7 and 8, we could write

A MST.K=SAMPLE(1-OMST.K,PERD.K,0) (9)

L OMST.K=OMST.JHDT/DT) (MST.J-OMST.J) (10)
N OMST=0 . (11)
MST = (1) Present Machine State
OMST= (1) Machine State at end of Previous DT
PERD = (HRS) Interval Between Changes of State.

Equation 9 ensures that the state will change back and forth
between O and I, but it is only valid for the conditions within
a production shift.

We shall deal, in a moment, with an equation for PERD: first
we must revise equation 9 to cope with the start of a shift.

When a shift commences, the machine has to be in state
1, producing. Either it was working at the end of the last shift,
in which case it will still be capable of working as nothing has
happened to cause it to breakdown, (we ignore the prospect of
a roof fall during the inter-shift break), or it was broken down
at the end of the shift, in which case the maintenance team
have stayed behind to fix it. Strictly speaking, if the machine
was working at the end of a shift we ought to allow for the un-
expired portion of its random production period to be carried
over to the next shift, rather than starting a new run. In
practice, the data on run lengths are just not good enough to
justify the complication.

If we define an equation for the Old Face State, OFST, by
analogy with equations 10 and 11 for the Old Machine State

L OFST.K=OFST.J+DT/DT)(FST.J-OFST.J) (12)
N OFST=FST : (13)

then, at the start of a new shift. and onlv then, FST = 1 and
OFST = 0O, so FST*(1-OFST)=1. We can therefore replace
equation 9 by

A  MST.K=SAMPLE(MAX(1-OMST.K.FST.K*
(1-OFST.K),PERD.K.0) (14)

The max function will work as follows. If, at the end of a
shift, MST=0 and OMST=0, then when PERD signals the shift
end, MST will change to 1 and, 1 DT later, OMST will also
change to 1. When PERD, as described below, generates the
start of a new shift, with the old equation 9, | - OMST would
have been zero, and the machine would have been broken
down. However, FST*(1-OFST) will be 1, the MAX function
will pick this out, and MST will be 1.

The reader may well find this rather hard to follow from the
text description and he should, in any case, run the program
listed at the end of this paper and carefully scrutinise the
output.

Equations for the Event Period

Finally, we deal with the equation for PERD, the sampling
interval in equation 14, and, operationally, the interval be-
tween changes of machine state.

The day is divided into five periods: the time to the start of
the day shift, the day shift itself, the interval between shifts,
the afternoon shift, and the balance of the 24 hour day.

The first period is DSST hours long and ends when the shift
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starts. This would be given by
A PERD.K=DSST*CLIP(1,0,DSST-DT, TDIFF .K) (135)

The DSST-DT is because CLIP takes the first argument, | in
this case. when the third is greater than or equal to the fourth.
If we had used DSST alone, the CLIP would still be adding
DSST to whatever should happen during the shift.

The inter-shift duration, ASST-DSE, and the time after the
end of the afternoon shift are easily seen to be given by more
CLIP functions added to equation 15, to get

A PERD.K=DSST*(CLIP(1.0,DSST-DT,TDIFF.K)

X +(ASST-DSE)* CLIP(1,0,TDIFF.K,DSE) ;
*CLIP(1,0,ASST-DT.TDIFF.K)

X +(CDUR-ASE)*CLIP(1,0,TDIFF.K,ASE) (16)

Following the arguments used in connection with equation 14,
the shifts must each start with a production run, so at the time
of shift starts, PERD has to pick up whatever random value
equation 8 is generating for LPR. This adds another continu-
ation line to equation 16.

X +LPR.K*FST.K*(1-OFSTK)

Finally, during the shifts themselves, we have two possibilities:
either the machine was working and OMST=1, in which case
the next PERD has to be LBD, or it was stopped, OMST was
0O, and PERD must become LPR. This can, however, only
happen when the face is working and both FST and OFST are
one. It will be convenient to interrupt our consideration of the
development of the equation for PERD, and introduce a new
variable called SPERD, which is the length of a machine run or
breakdown according to the randomisation, SPERD will be

A SPERD.K=(LPR.K*(1-OMST.K)+LBD.K+OMST K)
' *FST.K*OFST.K (17)

Equation 17 will give the correct contribution of a production
run or a breakdown to PERD for the greater part of a
production shift. It will, however, give fallacious results when
SPERD would cause the time of the next event to come after
the end of a shift because the small overlap from SPERD will
be added to the value derived from the part of the equation
for PERD presented as equation 16, which will mean that the
first event of the next shift will not coincide with the com-
mencement of that shift. The effect would scarcely matter
with the values quoted above for the distributions of LPR and
LBD but, with more realistic values, an appreciable error
would creep in. The correct contribution from the machine to
PERD must, therefore, take account of the shift-working
pattern, and is

MIN(SPERD.K,(DSE-TDIFF.K)*TV.K+(ASE-TDIFF.K)
*(1-TV.K))

where TV is a zero/one variable recording whether the shift
being considered, if there is one, is the day or the afternoon
shift, and

A TV.K=CLIP(1.0,DSE,TDIFF K) (18)

The complete equation for PERD is therefore
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PERD K=DSST*CLIP(1,0,DSST-DT.TDIFF K)

+(ASST-DSE)*CLIP(1.0.TDIFF.K.DSE)
*CLIP(1.0,ASST-DT.TDIFF.K)

+(CDUR-ASE)*CLIP(1,0.TDIFF.K.ASE)
+LPR.K*FST.K*(1-OFST.K)

X +MIN(SPERD.K,(DSE-TDIFF.K)*TV.K+(1-TV.K)
*(ASE-TDIFF.K)) (19)

It is an important aspect of this paper to examine, not only
how the equations are put together. but also just what it is
about the DYSMAP language that enables it to work.

The variable TDIFF is continuous in the sense that it acquires
a new value with each DT of the simulated LENGTH. This
means that PERD, as calculated by equation 19, will at times
stay constant for fairly long periods under the influence of the
first three lines of that equation, but, during shifts, it will take
on a new value each DT. How then. does this square with
equation 147

The answer is that DYSMAP takes a sample at the indicated
time and stores the new value of PERD, which happens to be
calculated then, and holds it as the fixed interval which must
pass before the next sample is to be taken. All values of PERD
calculated during the intervening time are ignored. This can be
confirmed by producing a very detailed printout and including
an extra variable.

A NEXT.K=SAMPLE(TIME.K+PERD.K.PERD.K,
PERD.K) (20)

It will be seen that the values of MST change at exactly the
times indicated by NEXT.

Second methodological comment

Equations 14, 17, 18 and 19 are the real heart of this method.
Explaining them has taken some space, and understanding the
problem in the first place called for some mental effort. That
would have been necessary in any case, regardless of the pro-
gramming language one was using. We contend, however, that,
once that comprehension has been established, the actual
coding and debugging was far easier in DYSMAP than it would
have been in FORTRAN, and took up far fewer lines of model.
We therefore suggest that, for dynamic problems, the logical
facilities in DYSMAP and DYNAMO are by no means inferior
to those of FORTRAN; quite the opposite, in fact, once one
has mastered the trick of using them.

Performance Indicators for the System

One of the attributes of colliery engineering is the amount of
coal lost due to breakdowns, and we now discuss two equa-
tions for calculating the cumulative lost production during any
given LENGTH. We shall show that neither equation is
satisfactory.

When the machine breaks down it may be being simulated as
producing at, say, 650 tons/hour because it is in soft coal. In
the real world, it would still be in the same patch of coal when
it was repaired and would, therefore, resume production at the
same rate for the duration of the soft patch. In the model,
however, equation 5 will continue to sample away, producing



random production rates, for the duration of the breakdown.
For example, in one run of the model, the machine broke
down at a production rate of 620 tph, but resumed at 560 tph.
Altering the model to correct for this would be rather tedious,
and may not matter very much if one is to do a fairly large
number of runs. There are, however, two possible equations
for performance indicators.

The first measures the integral of the difference between the
value of OUT produced by equation 5, and FOUT from
equation 6, the difference being that the latter goes to zero
when production stops, either because the machine has
stopped, or because there is no shift present.

L LOUT.XK=LOUT.J+DT*(OUT.J-FOUT.J) *FST.J
N LOUT=0

If FST=0 because there is no shift, then no lost output
is accummulated.
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The alternative is to use

L LNOUT.K=LNOUT.J+DT*NOMOUT*FST.J*

(1-MST.J) (22)

which integrates the loss of nominal output for the duration of
machine stoppages.

In one run with a 48 hour LENGTH the values happened to be
LOUT = 4156 tons, and LNOUT = 3812 tons. Neither value is
the “true’ loss of output, which is a concept which is far from
easy to define.

Conclusion

We have tried in this paper to show how a rather complicated
modelling problem can be handled in DYSMAP, a problem
which we at first expected to be far more difficult than
eventually proved to be the case. The results demonstrated
that the DYNAMO/DYSMAP syntax had far greater modelling
power than had previously been asserted (particularly with
DYSMAP’s extensive diagnostics and its very useful
dimensional analysis software — see Ratnatunga, 1979).

We have, however, also sought to show something of the
process of constructing an equation set to produce previously
stipulated behaviour. We feel that in too many cases the
equations in a model are presented to the reader as though
they somehow emerged fully grown from the mind of the
modeller. This has, perhaps, contributed to some degree to the
criticism of some system dynamic models. It seems to us that
modelling requires that equations be constructed to meet given
requirements, and that they must be shown to do so, rather
than merely being presented.

We do not suggest that equations of this degree of complexity
have any validity or justification outside of this particular
project. We would certainly discourage people from using
them in a model merely because they look complicated or,
even worse, ‘scientific’.

=T S B - A T T

e e e e T
00 1 N AW N = O

19
20

21
22

24
25

26
27
28
29
30
31
32
33
34
35
36
37

MAP

* PROGRAM TO ILLUSTRATE RANDOMISED
PRODUCTION

NOTE

NOTE FILE NAMED SHIFT-MOD

NOTE

NOTE COALFACE MODEL

NOTE

NOTE FACE STATE 1 MEANS A SHIFT IS PRESENT
NOTE

A FST.K=CLIP(1,0,TDIFF K DSST)-CLIP
(1,0, TDIFF X,DSE)

+CLIP(1,0,TDIFF K,ASST)-CLIP(1,0, TDIFF.K,ASE)
OFST.K=OFST.J+(DT/DT) (FST.J-OFST.J)
OFST=FST

DSST=6

DSE=12

ASST=14

ASE=20

NOTE

NOTE EFFECTS OF RANDOMNESS ON MACHINE
POTENTIAL OUTPUT

s I = e S A ol -

NOTE

A OUT.K=NOMOUT*(1+FAC*SAMPLE(NOISE(3),
NPERD,0) )

C NOMOUT=500
C FAC=08

C NPERD=5
NOTE

NOTE ACTUAL PRODUCTION WITH EFFECTS OF
SHIFTS AND

NOTE RANDOM BREAKDOWNS
NOTE

A FOUT.K=OUT.K*MST.K*FSTK
NOTE

NOTE CYCLE WITHIN THE WORKING DAY
NOTE

A TDIFF.K=TIME.K-CENDK

L CEND.K=CEND.J+DT)*PULSE

N CEND=0 (CDUR/DT,CDUR,CDUR)

C CDUR=24

NOTE

NOTE SAMPLING OF DURATION OF BREAKDOWNS
AND RUNS
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39
40
41
42
43
44
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68
69
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72
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NOTE

A LBD.K=DT*INT(NORMRN(.5,.05)/DT)
A LPRK=DT*INT(NORMRN(1..1)/DT)
NOTE

NOTE CHANGES OF MACHINE STATE

NOTE

NOTE MACHINE STATE=1 MEANS MACHINE IS
RUNNING

NOTE

L OMST.K=OMST.J+DT*(MST.J-OMST.J) /DT
N OMST=0

A  MST.K=SAMPLE(MAX(1-OMST.K,FST.K*
(1-OFSTK)),PERD.K,0)

X *FSTK

A SPERD.K=(LPR.K*(1-OMST.K)+LBD.K*OMST K)
*FST.K*OFSTK

A PERD.K=DSST*CLIP(1,0,DSST-DT,TDIFF K)

X +(ASST-DSE)*CLIP(1,0,TDIFF.K,DSE)*CLIP
(1,0,ASST-DT,TDIFF K)

X +(CDUR-ASE)*CLIP(1,0,TDIFF.K,ASE)
X +LPR.K*FST.K*(1-OFST.K)

X +MIN(SPERD.K, (DSE-TDIFF.K)*TV K+(1-TV.K)*
(ASE-TDIFF.K))

A TV.K=CLIP(1,0,DSE,TDIFF K)

NEXT.K=SAMPLE(TIME K+PERD.K,PERD.K,
PERD.K)

NOTE

NOTE PERFORMANCE INDICATORS

NOTE

L LOUT.K=LOUT.J+DT(OUT.J-FOUT.J)*FST.J
N LOUT=0

L LNOUT.K=LNOUT.J+DT*NOMOUT*FST.J*
(1-MST.J)

N LNOUT=0

NOTE

NOTE CONTROL STATEMENTS
NOTE

C DT=.125

A PRTPER K=6-STEP(6-DT,6)+STEP (2-DT,12+DT/2)
STEP(2-DT, 14)

X +STEP(10-DT,20)-STEP(10-DT,30)+STEP(2-DT,36)
STEP(2-DT,38)

X +STEP(4-DT,44)
C PLTPER=0625
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75
76
77
78
79
80
81
82
83
84
85
86
87
88

89

90
91
92
93
94

95

96

97

98
99
100
101

102

103

104

105
106

C LENGTH=48
PRINT 1) TDIFF CEND

PRINT 2) FST OFST

PRINT 3) MST,OMST

PRINT 4) PERD,SPERD

PRINT 5) LPR,LBD

PRINT 6) OUT,FOUT

PRINT 7) NEXT

PRINT 8) LOUT,LNOUT

PLOT MST=M,FST=F(0,2)/FOUT=0(-700,700)

PLOT PERD=P,LBD=8,LPR=R(0.6)

NOTE

NOTE VARIABLE DEFINITIONS

NOTE

D ASE=(HRS) TIME OF END OF AFTERNOON SHIFT

D ASST=(HRS) TIME OF START OF AFTERNOON
SHIFT

D CDUR=(HRS) LENGTH OF WORK CYCLE,
USUALLY A DAY

CEND=(HRS) TIME OF END OF WORK CYCLE
DSE=(HRS) TIME OF END OF DAY SHIFT
DSST=(HRS) TIME OF START OF DAY SHIFT
DT=(HRS) SOLUTION INTERVAL

FAC=(1) SCALING FACTOR IN NOISE ON
PRODUCTION RATE

FOUT=(T/HRS) ACTUAL MACHINE OUTPUT
WHEN WORKING

D FST=(1) STATE OF FACE:STATE=1 WHEN A
SHIFT IS PRESENT

LBD=(HRS) RANDOMISED LENGTH OF A
BREAKDOWN

LENGTH=(HRS) SIMULATED DURATION
LNOUT=(T) LOST OUTPUT ON NOMINAL BASIS
LOUT=(T) LOST OUTPUT ON ‘ACTUAL’ BASIS

LPR=(HRS) RANDOMISED LENGTH OF A
PRODUCTION RUN

MST=(1) STATE OF MACHINE:STATE=1
WHEN MACHINE IS WORKING

D NEXT=(HRS) TIME AT WHICH NEXT CHANGE
OF MACHINE STATE IS EXPECTED

O O o o © O ©v9 g9 9

o

X TO OCCUR, ACCORDING TO THE
RANDOM SAMPLING OF BREAKDOWNS
X AND RUN LENGTHS

D NPERD=(HRS) PERIOD OF NOISE ON
PRODUCTION RATE
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D NOMOUT=(T/HRS) NOMINAL MACHINE OUTPUT
D OFST=(1) OLD FACE STATE

D OMST=(1) STATE OF MACHINE AT END OF
PREVIOUS DT

D OUT=(T/HRS) RANDOMISED MACHINE OUTPUT
D PERD=(HRS) TIME TO NEXT EVENT

D PLTPER=(HRS) PLOTTING INTERVAL

D PRTPER=(HRS) PRINTING INTERVAL

D SPERD=(HRS) DURATION OF EVENT FROM
SAMPLING

D TDIFF=(HRS) TIME WITHIN WORKING DAY
D TIME=(HRS) SIMULATED TIME

117 D TV=(1) TIME VARIABLE TO DENOTE WHICH
PART OF DAY IS

118 X HAPPENING

119 RUN DYNAMICS OF RANDOM BREAKDOWNS

120 +
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