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PART II

ABSTRACT

This is a paper of a more technical nature, and it examines the effects
of various planning horizons and of erroneous cost information on the model that

was presented in the first part of the paper.

The study demonstrates perhaps counter-intuitively that mixed policies
were more economical than more logical 'pure' policies of the traditiomal

system dynamics type.

1. INTRODUCTION

In the first part of this paper a multi-objective decison model was
introduced and some implied consequences of the approach used discussed. Let
us take the same model again to explore two questions of a more technical nature:
(a) How does the cost structure affect the results obtained?
(b) What is the significance of a planning horizon in hybrid runs that

combine simulation and optimization?

There is an analogy between a forecasting error and a cost function

error to the extent that in both cases erromeous information might lead to
unsatisfactory decisions. It has been shown in a recent study, however, that
feedback models might be insensitive to forecasting errors when a simulation
model is being optimized (6). Unreliable cost or profit information can be
far more serious, however, because no feedback information will be available
for corrective action. Actual forecasting error can be smoothed and a refined
control policy might then prove effective but a company has to take the quality
of cost or profit information as given, at least in the short run. This is

way the cost structure topic deserves special attention.

—i



2.

COST STRUCTURE

1)
of 300, 3, 0:03.

approximately balances various cost components of the model.

The model was adopted from Jarmain's "Problems in Industrial Dynamics"

Initially the model had cost parameters PARAl, PARA2 and PARA3 with values

The idea was to select these parameters in a way that

The cost parameters

will now be changed in such a way that the range of parameter values changes

symmetrically.

of objective function comparisons, described in part 1.

OBJF was chosen as the objective function as it was the winner

Figure 1 shows the

experimental design for cost parameter variation used and the results obtained.

(a)

Run number (1) {2 (3) (4) (5)

Cost parameters

PARA] 3000 300 60 30 15

PARA2 3 3 3 3 3

PARA3 0.003 0.03 0.1I5 0:3 0.6

Decision parameters

Al - 0.09 0.05 0.39 0.56 B.75

A2 0.83 1.0 1.0 1.0 1.0

Bl 1.0 1.0 120 0.91 1.0

B2 0.03 0.5 0.08 0.12 0.13

Cl 0.7 1.0 1.0 .0 0.97

c2 0.02 0 0.08 0.13 0.08

Real cost .245+06 .459+05 ,757+05 .107+06 .149+06

Cost increase 434,97 » 65.37 133.6Z 225.32
Figure 1. Relationship between cost parameters and decision

parameters with 150 iterations and with a simulation

length of 50 periods

Figure 1 gives rise to the following conclusions:

Estimation error caused by underestimation of the cost parameter range is

less harmful than that caused by overestimation.

factor of ten increases costs only by a factor of 2.3.

Underestimation by a

In a real multi-

objective decison-making situation at least some objectives are

incommensurable, however, and an estimation error is thus unavoidable.

Still, an estimation error of a magnitude of ten times seems to be
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improbably high in a real life situation and this gives hope that

workable model structures for multi-objective purposes will be found.

(b) The above-mentioned cost behaviour was primarily caused by parameter Al,
which measures the ability of the model to make use of the inventory
correction term. The high values of PARA3 (and thus low values of PARAL)
mean that inventory discrepancy is a significant cost factor. SDR-algorithm
reacted correspondingly and produced high values of Al. Relative cost
parameter values were thus transferred to values of decision parameter Al.
This indicates that without explicit use of cost information a system
dynamics model might only give superficially valid results for decision-making

purposes.

It might now be useful to examine cost estimation errors in even more
detail, as this is a question of vital importance. There are at least three

approaches available:

(a) Maximize change in policy parameters due to changes in cost parameters

To the original model were added sensitivity parameters PXl1,...,PX32,
which allow a maximum deviation of *+10%7 from the original, but this time
'unknown' cost parameter values. The initial values of sensitivity parameters
were half-way between their upper and lower limits. Therefore, C PX11=15

and 0< PX11<30.

The final decision parameter values from Fig. 1, run (2), were given to
the computer as the starting point, and at this time PXll,...,PX32 were the
decision variables. The objective function OBJF used was maximized in order
to find the least economical solution. The SDR-algorithm pushed cost-increase
parameters PX11l, PX21l, and PX3l to their upper bounds and cost-decrease
parameters PX21, PX22, PX32 to their lower bounds (=zero). This time the
solution was trivial and as expected because all cost functions were convex.

In a more complicated situation where convexity assumption is not valid, the
final solution might be a trade-off between the cost functionms. By starting
from estimated maximum parameter errors, the experimenter could find a new value
for the economic criterium (profit or cost) used, and the worst combination of
sensitivity parameters. When the 'optimal 'solution was found the first time
(Fig. 1, run 2), sensitivity parameters had symmetrical values and cancelled
each other out. By giving cost parameters new, corrected values the procedure
earlier described might be repeated. It would be technically straightforward,

therefore, to iterate in the following way :-
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Iteration Optimizing Explorable parameters

number criterium
la min OBJF decision parameters
1b max OBJF sensitivity parameters
2a min OBJF decision parameters
etc,

(b) Maximize change in policy parameters due to changes in cost parameters

To demonstrate this possibility a new objective function OBJP was formed in

the following way :
6
oBIP = ___ Z ‘DP(i)O—DP(i) , where
l=

OBJP = objective function for post-optimality analysis
DP(i) = decision parameter i ; im] .. ..6

DP(i)O = initial value of decision parameter i (from run 2)

Both decision parameters DP(i) and sensitivity parameters were explorable
parameters this time. The upper and lower bounds used where the same as before.
The final solution obtained was as follows:

FINAL SOLUTION

Al = 1.00

A2 = .00

Bl = .00

B2 = 1.00

Cl = .00

c2 = 1.00

PX11 = 3.22

PX12 = 3.22

PX21 = .03

PX22 = .03

PX31 = .00

PX32 = .00

NO OF OBJ FCT EVALUATIONS 161
INITIAL VALUE OF OBJ FCT .00000
FINAL VALUE OF OBJ FCT .54500+01
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This time, decision variables were pushed as far as possible from their
optimal values, which were given in run 2. Decision parameter Al, for
example, had received the value 0.05, and thus ended up in the upper limit
1 The new parameter combination found gave to OBJF a value of .186+10,

which indicates that OBJP really did find an extremely poor solution.

As there was no cost component in the objective function, positive and
negative sensitivity parameters received symmetrical treatment. Interpretation
of their numerical value of about 17 error might be difficult. It could
indicate, however, that the optimum solution was quite insensitive to cost
parameter errors. Perhaps one should, after all not maximize OBJP but

OBJP + OBJF.

(c) Investigate cost uncertainty by Monte-Carlo simulation

Monte-Carlo simulation has been used as a management consultant's tool to
estimate uncertainty-based errors in company models that have been derived
from historical company data (3). It is a relatively simple task to write
a computer program which does required sampling until the reliability of
results satisfies the experimenter. This idea could be applied to post-
optimality cost parameter analysis by letting the computer

- automatically select random cost parameter values

- make a 'simulation' run based on optimal parameter values and on
changed cost parameter values

- record wanted variable values like, for example, cumulative costs

- repeat the procedure until the experimenter is satisfied with the

statistical risk remaining.

The procedure outlined above would require some changes in the present
version of SDRDYN: A new iteration-oriented module that takes care of
post-optimality analysis should be added. This is no longer, however, a
fundamental problem, but a purely technical task. It has been proved that
DYNAMO can be coupled succesfully with an optimizing tool, in our case with
SDR. It follows from this that DYNAMO should be coupled with addiﬁional
tools as long as the marginal utility of doing this remains positive.
In an ideal situation, the linking of different tools would not be

permanent, but could be done each time from a terminal.
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3. RUN-LENGTH

An experiment was made by using a sine-wave (amplitude 50, period 100)
as input information. The positive half of the sine-wave generated
results summarized in Fig. 2. The total run-length of 50 periods was
composed of shorter lengths in runs (7), (8), and (9). In mm (7)), for

example, there were two runs of 25 periods covering periods 1-25 and 26-50

respectively.

Run number (6) (7) (8) (9)
composition of
total run-length 50 25+25 17+17+16 13+12+13+12
cost .99420+05 .55895+05 .50919+05  .29539+05

.38541+05 .11311+05 .55897+05
.31529+05 .60960+05

.34898+05
Total cost - 99420+05 .94436+05 .93759+05 .181129+06
Used CPU-time 6.773 8.322 9.849 11.301

(Sec.)

Fig. 2. Relationship between cost and run—-length

The results of Fig. 2 imply that optimum run—-length is:affected by

several factors :-

(a) Model-generated cost and run-length decrease simultaneously,
because the model can now better adapt itself to environmental changes.
The decreasing cost trend of models (6) to (8) is caused by final
parameter values as the comparison in Fig. 3 indicates. The values
change considerably for the second half of the total run-length as the
demand is then falling.

Run (6) Run (7)
Parameters Periods Periods Periods
1-50 1-25 26-50
Al L0 0.99 0.58
A2 1.0 1.0 0
Bl 140 1.0 0.99
B2 0.14 0.16 0.15
il 1.0 0.96 0.97
C2 0 0 0.31

Figure 3. Effect of run-length on parameter values
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(b) Model-generated cost increases, however, when run—-length decreases
below some minimum length. Run (9), for example, gave costs that
were about twice that in earlier versioms. Why then did splitting
of the run-length cause this strange result? Figure 4 collects
some useful information from simulated data in order to understand
what really happened. Parameter values are from periods 1-25 in

run (7) and from periods 1-13 in run (9).

Parameter Al Parameter A2 Retail inventory
Run number Run number Run number
Iteration (7) 9) (7) (9) Period (7) (9)
1 1.0 1.0 0 0 0 400 400
5 0.9 0.9 0.1 el 5 395 369
10 0.68 0.68 0.32 0,32 10 416 312
15 0.68 0.68 0.32 Q.32 15 438 266
20 0.616 0.216 0.784 0.784 20 454 229
25 0.616 0.216 0.384 0.784 25 472 200
30 0.739 0 0.461 1.0 30 494 195
35 0.539 0 0.661 1.0 35 512 224
40 0.467 0 0.993 1.0 40 503 264
45 0.467 0 0.993 0.996 45 494 327
50 8.575 0 0.681 1.0 50 511 414
60 0.633 0 0.728 1.0
80 0.866 0 j ) 1.0
150 0.99 0 1.0 1.0

Figure 4. Comparison of runs (7) and (9)

Parameter A2 had a final value of one in both cases, but parameter Al
had a value of zero in version (9). When the 'planning horizon' of
run—length was decreased to cover only the first 13 periods, the model
visualized continuously increasing demand. In this situation inventory
correction term to retail order rate was ineffective, and the ordering decisio:
was based, therefore, on sales information. That is why the SDR-algorithm
selected the following equation for periods 1-13 :-

OR.KL=ARS.K+(DRO+0.01*DDR.K)*ARS.K-FOB.K) /TAPL.

Also time series data for retain inventory show that the version (9)
model was losing inventory as long as demand was increasing. This is a
perfectly valid assumption if the world ended with the planning horizon.

As it certainly does not, the problem of run-length selection is an important
one, and similar to the problem of planning horizon selection. It is

possible to reduce the planning horizon by using an artificial loss function
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that increases towards the end of the planning horizon. (4), (2).
Formulation of such a constraint is related to the system then under

study and requires, therefore, more art than science.

(c) CPU-time used increased with decreasing simulation length as expected.
In the reported experiment each consecutive run started with the same
parameter combination for Al,...,C2 instead of using the latest values.
This procedure might have increased computer search time to some extent,

but it reduced the risk of not finding a new solution.

4. FINAL REMARKS

This paper has shown that an optimizing system dynamics model was
applicable for multi-objective decision-making purposes. All test runs had
a fixed number of interations without any interruptions by the user. SDRDYN
accepts any number of iterations and allows the model builder to check
results from a terminal. With this information he may decide either to obtain
more iterations or to change the objective function used to another one by

selecting from an earlier defined group of potential functions.

A model builder might, for example, let the computer make a relatively
small number of iterations and then might want to take the experimentation
initiative from the computer. At any time the initiative can be returned to
the computer again, all of which means a real interactive process in the full
meaning of the expression. This possibility indicates ome very fruitful
research area, as well as hopefully improving system dynamics acceptability
as a real world management tool. Also more sophisticated problem areas with
genuine multi-objective character, different ways of formulating decision
parameters and of giving them initial values, might be interesting subjects
for further research efforts. Much more work should be done, however,
before any firm conclusions can be drawn from the use of a tool which only
strives for an optimum solution without any guarantee of really being able to

reach it.

There are four pure policies that could be used when making decisions for

the aggregate production and aggregate work force as demand fluctuates: (5)
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(1) altering the size of the work force by hiring or laying off

(2) using overtime or idle time

(3) holding the production rate constant and allowing the fluctuations
in demand to be absorbed by changes in the inventory level

(4) using subcontracting

In a real life production planning situation the most economical
solution is a combination of the pure strategies listed above. Correspondingly,
a combination of information use alternatives might prove to be most

economical because information is just a mirror of what actually happens in

a feedback model.
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raacki kelohar ju.moltiob |
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HOTE  (RDINARY  pogual TOH:S

LR =RL I8 e (P IX=05, JK) KETATIL INVENTORY
FPKLEPALK RACTORY PROGUC T TON

PALK=PA ST 0 ZVARRIPT, D=1 ALY PRODUCTION ARILITY
PLK=FOR e rwan PRODUCT [0 ]unlca}kn
FORLK=Fon, J oD TR0 IK=FP, IRV FACTORY 0RDER RACKLOG
ARS.K=ARS. JeDT# 1/TARS (R, IK=4HS . J) AYERAGE BETAIL SALES
TRIDLK=wA5220S. K TELAL VALUE FOR RETAIL [NV DESIRED
RID.K=MAXCTRIDLK, TVRILK)  WETALL INVENTORY DUESIRLD
TVRI.K=S5TEP (450, TIT) TERMINAL VALUE OF RETAIL IKVENTORY
TIC=1000 TIME +OY FEEMINAL CONSTANT

DDE.K=FOU.K/PALK DiELIVERY DELAY ESTIMATE
DORK=NDR, J+NT* L/ D00 DS, J=000, 1) DELIVERY DEIAY RECOCNIZED
PLDLK=(CI*ORO+C2000, ) » AR5, K PIPELIHF ORDERS DESIRD
RS-KL=!00+5TEP(HUHT.STTH)+&MPL*5{R(6.2&*YIHE.K)/PERD
HGHT=20

STTM=0

AMPL=0

PERD=100

NOTE EQUATION FOR RETAIL ORDERS

R ROJKL=ARS.K+A1+(RI+SINC+N2#RIN, K=RT.K)/TAI

X +A2%((CI*DRO+C2%NNR, K ) ¥ARS.K-FOB.K)/TAPL

NOTE DECISION PAHAMETERS

C Alm|

C A2=0

C Ri=}

C p2=0

C Ci=|

C C2=0

NOTE SENSITIVITY PARAMETES

PXI1=15

PX12=15

PX21=0.15

PX22=0.15 =

PX31=0.0015 : =

PX32=0.0015 v

AIC=0,05

A2C=1.0

BiIC=1.0

B2C=0.5

CiC=1.0

c2c=0

NOTE ORDINARY PARAMFTERS

C TAP=4 TIME T0O ADJUST PRODUCTION

C WBD=2 WEEKS 0OF BACKLOG DESIRED

C TARS=! TIME TO AVERAGE RETAIL SALES

C RIDC=400 RETAIL INVENTORY (IF A CONSTANT)

C TAI=2 TIME TO ADJUST [NVENTORY

C DR0=2 DELAY.IN RECEIVING 0QDERS

C TAPL=2 TIME TO ADJUST PIPELIME

C WAS=4 WEEKS OF AVERAGE SALES

C TDDR=2 TIME TO ADJUST DELIVERY DELAY RECOGNIZED

NOTE INITIAL EQUATIONS

N RI=400

N Fng=200

N PA=100

N ARS=100

N DOR=DDE F

NOTE #%#*MULTI-ORJECTIVE PART OF THE MODEL#%#+

NOTE CFPCO IS AN OBJECTIVE FUMCTION CANDIDATE

L LFP.K=LFP,J+(DT)(FP.JK-FP1,JK)

N LFP=100

R FP1.KL=LFP.K ‘

A FPCHA.K=FP.JK=FPI1,JK

A FPCOST.X=(PARAI+PX11=-PX12)*FPCHA.K*FPCHA.K FACTORY PROD COST
L EFPCH.K=CFPCU.JoDT*FPCHST.J CUMULATIVE FACTORY PRODUCTION COST
N PCn=0

NOTE CRICH IS AN OBJECTIVE FUICTION CANDIDATE

R RIR.KL=RI.K

L RIV.K=RIl.J+DT*#(RIR.JK=RI1.J)

N RIl=400

A RICHA.K=RI.K-RI1.K

A RISCH.K=(PARAZ+PX21-PX22V*RICHA.K*RICHA.K

L CRICH.K=CRICH.J+DT*RISCH.J CUMULATIVE RETAIL INV COST

N CRICH=0

C PARAZ2=3 CnST PARAMETER MUMNER Twn

NOTE CRICO IS AN OMJECTIVE FUNCTION CANDIDATE

A RICOST.K=(PARAI+PYII=PXI2 ) (MAS*ARS.K=Q,K) *(WAS*ARS. K=RI1.K)
L CRICO.K=CRICN,J+DT*NICNHST.J CUMULATIVE RETAIL INVENTORY CcnsT
N CRICO=0

C PARA3=0.03 CHST PARAMETER MUYREP THRIEC
KOTE DERIVED OBJECTIVE FUMCTION CANDIDATES

A ORJF.K=CFPCO, K+CHICH.K+CRICN.K

A ORJ2.K=CFPZO,K+CIiICH. K

NOTE OBJECTIVE FUNCTION COMPONENTS FOR e
NOTE POST-0PTIMALITY ANALYSIS

A AID.K=AIC=-AI

A AZDK=A2C-a2

A BID.K=RIC=A]

A B2D.K=n2C=-n2

A CID.K=CIC-CI

A C2D.K=aC2C=C2

NOTE ONJECTIVE FUNCTION FOR POST-0PTIMALITY AMALYSIS
A ORJP K=tAYCAIN K, =AIN ) +UAY (AN K, =AZD. K ) +
X MAXCDOIG. K, =GV ) s MY RN K =N20,K) +

X MAXCCID.E, =CID K e aaX (000K, =CoN LK)

HOTE  OUIPUT SPECTETGCAVTONS

PRINT 1M, 0220005 JSFECOZ ICRICH, CRICN/

X A)ORJE ONJ2/5FON, DORZA VDA, A65Z 1) D, 06 P
SPEC DT=0, S/LENG TSP TPER= 1 ZPLTRER=D

RUN =34 =

nnnnmrr>n>h>rrbrzn

aOO0O000000000
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