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Abstract

The utility of linearization and order reduction of System Dynamics models is

discussed.

Two methods are presented for linearizing a System Dynamics model and the

results of implementing them on an actual model are given.

Introduction

The objective of carrying out a System Dynamics study is to redesign the system
to improve its behaviour. In the redesign process it is of particular interest to
produce a ROBUST system, (Sharp, 1975), i.e. one that functions satisfactorily
whatever inputs it is subjected to and whose performance is insensitive to likely
parameters and structural errors. Because of the non-linearity of System Dynamics
models however no analytical procedure exists for designing ROBUST systems. Such
methods are though available for linear systems so an approximate linear model could
extremely useful in the early stages of redesign in that standard analytical
techniques to produce control laws that lead to suitable behaviour in the linear
system that could then be tested on the non-linear model. The non-linear systems
of System Dynamics often show behaviour that approximate closely to that of a
linear system so that linearization is not perhaps as ambitious as at first appears.
In particular many of the nonlinearities that occur, e.g. desired production
exceeding capacity so that production has to be set equal to the minimum of these

two terms, tend to be inoperative once a proper control system has been devised.

Furthermore it seems plausible that if the linear model is a reasonable
approximation to the nonlinear one and a suitable ROBUST set of control laws can be
devised for it, then these laws will be relatively insensitive to the effects of
the approximation and should therefore stand a good chance of working satisfactorily

for the nonlinear system also.
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The aim of such linearization is, of course, to provide a basis for the rapid
and systematic design of policies that will serve as a starting point for further

experiments with the nonlinear system.

Previous work (e.g. Thillainathan, 1975) suggests that such an approach can often
provide useful insights and relatively good control rules. In practice however the
linearization of System Dynamics models is a tedious and error-prone process if
carried out by means of partial differentiation. The aim of this paper is to
demonstrate a method whereby linearization of a System Dynamics model can be carried
out by numerical techniques which are easily implemented with a precompiler such

as DYSMAP or some versions of DYNAMO that generates a FORTRAN program.

The linearization process outlined is also suitable for other purposes, e.g. for

the generation of the interaction matrices used by McLean and Shepherd, 1976.

It can also be used to map a nonlinear system on to one of lower order. It is
observed in many models (c.f. Rademaaker, 1973) that certain of the State Variables
are effectively constant over the simulation range. It can therefore be useful to
construct a lower order linear model that is easier to work with, which does not

include such state variables explicitly.

Again in the interests of securing a lower order model that is easier to analyze
it is often desirable to replace a RATE generated by say, a DELAY3 macro by a linear

combination of other state variables, thereby eliminating the hidden state variables

of the macro.

Mathematical Procedure for Obtaining the Approximate Linear Model

System Dynamics models can be expressed in the form, (Sharp, 1974)
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Assume that we wish to represent the output of some subset x of these variables

by a linear system
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where
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returning to (1) and writing X=ix, andy = + we have
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expanding (4) as a Taylor series and ignoring terms in _:"
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Estimation of A..
1]

To estimate the matrix Aij it is necessary to:

i) Run model (1)
ii) Decide which state variables should appear in the linear model
iii) Decide by examining the nonlinear model which - if any - of the Ai. are zero
iv) Run model with uncorrelated and non-serially correlated noise term Ej (PRBS)
added to each state variable of interest

If we assume that the state vector X' corresponding to this output is written as

A I A @)

then it satisfies the equation

2(-'n+1 5 E'n T f(i')—‘" T Xy +-€'.g’ %_5' ¥ 5;1%’ i.l-‘ % 3‘-&\!}) (8

We now assume that the variables X in (1) are generated by a linear system

of the form (3).

It then follows that the equations for the subset of state variables x" can be

written
o =x!* +prx @A (x! £8,.1! 2!
xi 17X} DT (?Alj (xJ,n+Ej'n) + 3B, iy red) (9)
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subtraction of (3) from (9) gives:

e g = i e | *E | g (S
BT e s e P x! o8 D (10)

or

1! —x!'' —x! 1 = * B
S T e Gl Tl R (1)

Clearly the left hand side of (11) represents the output of a stationary process.

Cross-correlation of (11) witth gives, assuming that Ej , are uncorrelated
¥

,n
random variables (PRBS), that:

2 :
E(& Y*A. .= 1 ; e iy e 1
i S E'Ej,n xi,n+1 xi,n xi,n+l+xi,n) (12}
or
N = _....1_.— * ‘ L] T el L]
At E€2 ) E{Ej,n X{ o+l %, 5,001 i,n) (13)

jsn
It should be noticed that unlike certain other applications of correlation
methods there is no problem in this case of obtaining the necessary number of data

points since all the data is computer generated.

Estimation of B.
ik

(1) The value Bik could be estimated by use of the correlation technique described
above. They can however also be derived by an alternative method described below.

It should be noted that this method can easily be adapted to the determination of the
S

1]
The method consists of running the model (1) with each of K input pairs

i = (1004 13(E) peoeuif (0 # T ,0 (0))

k- i 1 i :
= (11(1:),12(:) ,...,1k(t).-1k.1m(t))

where I, (which is constant) represents the size of a test input perturbation

applied to the input ik.
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(2) If we assume that the outputs are generated by a linear model of form (3)
"~ are given by

+ k . . :
then the values EF and X corresponding to the inputs i and 1
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subtraction of (15) from (14) gives
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which once the A have been estimated gives an estimate of B  at each step of
ij ik
the simulation.

if there are N steps

The obvious approach to obtaining an estimate of B
ik

in the simulation is to take

N
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Addition of (14) and (15) gives
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whence once the A and B have been estimated, an estimate of ¢ can be obtained,
] ik i
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-91-



It should be noted that the values of the coefficients of the ¢ matrix
. ot
represent roughly estimates of the average degree of influence which the state
variables not included in the linear model have upon the system, while the values
A represent the influence of the state variables of interest on the system.
ij
Clearly if the neglected state variables show considerable variation the ¢ may be
i

relatively poor estimates of their effect at any particular point in time.

Under these circumstances the linear model obtained may be unsatisfactory.

Similarly the B represent the average effects of the inputs on the system.
ik

Again if the variables that determine these effects (in general a set of nonlinear
equations) show considerable variation we may again expect that the linear system

will be a poor approximation.

Computational Aspects of Methods

The methods described above are easily applied where a FORTRAN version of
the original DYNAMO model is available, e.g. as generated by the DYSMAP compiler.
Indeed it would be a relatively simple matter to produce a version of the DYSMAP
compiler that would generate the necessary estimates automatically. The facilities

that are necessary are:

(1) the ability to run the nonlinear model in its original form and again
with various perturbations such as noise inputs

(i1) the ability to run in parallel the basic nonlinear model without noise
and the same model with noise terms added by dimensioning the state

variables as 2 - vectors

(iii) a method of scaling the perturbations to the state variables and inputs,

e.g. as 17 of their initial value.



Example of an Application

The method described above was applied to the model below:

PROJSR.KL=0.04*RDSIZE.K

RDSIZE.K=RDSIZE.J+DT*RDCHGE.JK

RDCHGE . KL=DELAY3 (DESRD.JK,RECDEL)

RECDEL=10

DESRDLKL=(DESCS.K*l.&-CS.KrPOTP.K*Z.5)/(12*2.5)
POTP.K=POTP.J+DT*(PROJSR.JK—PROJCR,JK)+DT*(DESRD.JK—RDCHGE,JK)*.04
DESCS.K=TABHL (TAB,TIME,K,0,120,12)
TAB=17OI175!186}218}237!255!285/326!365}418}49?

CS.K=CS,J+DT* (PROJCR.JK-DECAY.JK)*2.5

DECAY.KL=DELAY3 (PROJCR,JK,ML)

ML=100
PROJCR, KL=DELAY3 (PROJCR, KL,DD)
DD=50
DT=.125
LENGTH=60
PLTPER=1
PRTPER.K=1
RDSIZE=8.5
cS=170
PROJSR=. 34
POTP=17.2
PROJCR=. 34
DESRD=.4

PEZZEEPO000R00 ol - - I = B

As formulated this contains 12 state variables:
RDSIZE,POTP,CS and 9 hidden state variables corresponding to the 3 DELAY3 macros.

The method was used to determine a 3rd order linear model containing only the state

variables RDSIZE, POTP and  CS and the input DESCS corresponding to this system.

2. In fact this model constituted a fairly severe test of the method since it
is unstable. Any differences between the actual model and its linear
approximation would therefore tend to increase over the course of the
simulation. Application of the approximation method using runs to determine

the Ai. gave the following linear model:

RDSIZE .0008 ,0001 -.0001] |RDSIZE .0121 -1.483
POTP = {.0396 -.0029 -.0012p qPOTP + {-.0028 }DESCS + | 0.419
Cs .0000 .0000 ,0000§ (CS .0104 -1.820

A comparison of selected values of the 3 state variables is given below. As
can be seen agreement between the 2 models is good with the only significant error
being of the order of 57 in POTP. In view of the unstable nature of the model this
result is very satisfactory and suggests that for the stable systems encountered in
the majority of business applications the techniques described should give

satisfactory linear approximations.
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Comparison of State Variable Values for Nonlinear Model

and Linear Approximation

ORIGINAL LINEAR ORIGINAL LINEAR ORIGINAL LINEAR
MODEL MODEL MODEL MODEL MODEL MODEL
TIME RDSIZE RDSIZE POTP POTP Ccs Cs
0.0000E 00| 8,5000 8.5000 17.200 17.200 170.00 179.00
10.00 13,506 14.384 18.245 18.554 170.00 169.79
20.00 21.668 20.919 21,794 22.116 170.14 170.19
30.00 31.374 28.878 28.675 28.011 170.96 171.85
40.00 42,999 39.730 39.114 36.690 173,51 176.06
50.00 a6 7T 52.661 53.237 49,238 179.22 182.13
60.00 67.392 67.352 70.261 66.319 189.73 189.79
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