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Abstract

This paper attempts to explain a result that has been noted in several system dynamics
studies, namely that the performance of a properly designed system that depends on a
forecast is relatively insensitive to forecast error. This is shown for continuous linear

systems to be a consequence of the design criteria used in system dynamics modelling.

The role of Perfect Forecasts in such systems is discussed and the means by which
normal system dynamics design procedures produce systems that are sensitive to forecast

error elucidated.
1.1. Introduction

System Dynamics models of business systems generally make use of forecasts of future
values of input variables such as Order Rate. In the course of various studies carried
out in the System Dynamics Research Group it has been noted that system behaviour is little
changed if, instead of assuming that perfect forecasts of future values of the variable of
interest are available, imperfect forecasts are used. Thus a study of the Chemical Plant
Investment Cycle (Hill, 1972) showed that system behaviour was hardly changed if fore-
casts of future Chemical Demand were assumed to be liable to bias at certain stages of
the investment cycle rather than being perfect. A study of Tanker Chartering (Coyle 1974)
lead to similar conclusions with regard to forecasts of future Oil Demand. A study of
a Production Planning System (Sharp and Coyle, 1976) where forecasts of future Order Rates
were generated essentially be exponential smoothing showed that the advantage of perfect
forecasts over forecasts genmerated by smoothing was slight, if suitable alterations were
made to system policies when using the forecasts derived by smoothing. Various other

instances of this phenomenon are described by Winch (1975).
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Such results raise a number of interesting questions. Firstly, is it true that
the use of System Dynamics methods for the redesign of certain types of system are
likely to yield systems that are insensitive to errors in the forecast used and if S0
what are the distinguishing characteristics of such systems? Secondly, if such systems
exist, what are the assumptions that are built into the system dynamics approach that
lead to this insensitivity? Thirdly, what is the role of forecasts under these
circumstances? The further question then arises as to whether the advantages derived
from a perfect forecast can be attained in some other way. Answers to these questions
should give not only insights into the applicability of system dynamics methods but
also, in view of the relative paucity of discussions of other than the statistical
characteristics of individual techniques in the literature, help to establish the role
of forecasts in systems and the type of situation in which perfect forecasts are

desirable.

The aim of this paper is to give a partial answer to these questions by examination
of the effect of replacing perfect forecasts by biased forecasts or by forecasts
generated by the exponential smoothing process commonly used in system dynamics models
(Forrester, 1961). To render mathematical analysis possible the discussion will be
confined to linear systems and even then will be somewhat heuristic. Various authors
have shown however, that nonlinear system dynamic models can often be well approximated
by linear ones (Fey, 1961) (Rademaker, 1974), (Sharp and Coyle 1976) so it seems

plausible to assume that the conclusions have a wider validity.

1.2. The System to be Studied

In what follows, the assumption is made that a continuous linear system dynamics
model is a satisfactory apﬁroximation to the actual system. For simplicity of exposi-
tion detailed discussion will be confined to the case where the system concerned has
a single driving input i(t). Such systems are very common in corporate modelling where
the input is typically an exogenous Order Rate. It is assumed that a perfect forecast
of the input at some time f£f(t) = i(t+a) a »o is available for use within the system.
For such a linear system the differential equation analogue of the usual DYNAMO model
takes the form (Sharp, 1974)

X =Ax+ By +af(t)+bi(t) (1)
¥y =Cx+ Dy +¢ £(¢) (2)

Where the variables x correspond to LEVELS and SMOOTHED variables and the variables y
are the RATES and AUXILIARIES determined within the system. By virtue of the Sortabilit;
requirement (Sharp, 1974) imposed on system dynamicsmodels these equations can be
rewritten (by suitable elimination)

x = Fx + df(t) + bi(t) (3)

z = Gx + hf(t) (4)

where the variables z are the internally generated RATES within the system.
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2.1. Criteria for System Design

The aim of a system dynamics study is to ensure that the system (3), (4) fulfils
certain requirements. These requirements appear either explicitly or implicitly in

the literature c.f. (Forrester, 1961), (Coyle, 1974). They are:

a) That the system is stable

b) That the system has zero position error i.e. the vectors x and y take up certain
desired final values p and ¢, respectively when the system is submitted to a
unit step input. For this to be the case we have from (4) that since
f(t) = i(t+a) = 1

qQ=Gp+h (5)
and from (3) that
o=Fp+d+b (6)

c) That the final velocity error for a unit step input be suitably small
d) That a low frequencies the amplitude of oscillation of the system states is
given by p, i.e. low frequency inputs are not undesirably amplified.

e) That the system cope satisfactorily with noise. Four major sources of noise can
be recognised these are:

i) random fluctuations in the exogenous input
ii) measurement error
iii) structural error due to the fact that some system relationships can
be expected to be subject to considerable random error (Sharp, 1974)
iv) errors associated with the forecasting process

In practice this means that the system (3), (4) must cope satisfactorily with noisy
inputs and also noise terms that represent the effects of (ii), (iii) and: (iv),
(Sharp, 1974). Such noise terms generally contain high frequency componeﬁts and it
is generally a requirement of the System Design that the internal rates z are unres-
ponsive to high frequency noise. Thus the internal rates z are required to act as a
low pass filter so that their response to frequencies above some critical frequency
W, is very highly damped. In a production planning system input order rates generally
contain substantial components of frequency 1 year. The natural time unit for such
a system is a week and the normal requirement is for a highly damped response to

seasonality whence we have
2x

ucy,"g'j—-}l
In most business systems the week is a convenient time unit and we shall assume
this in what follows. Business systems are generally required to damp out the effects
of seasonality which shows itself in the presence of substantial high frequency
components. On the other hand they are expected to respond satisfactorily to low
frequency inputs corresponding to the Business Cycle with a period of roughly &4 years.
Accordingly we take as a suitable value fori% in the following discussion.

1

We | 7.8
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The explicit spectral analysis of systems with regard to input noise appears
frequently in the literature e.g. (Coyle, 1974). The analysis of the response of
the system to additive noise terms appears less frequently probably because in
practice a system that damps out high frequency input noise also damps out high
frequency noise from other sources. The requirement that the system act as a low pass

filter in the sense defined above is however crucial to the analysis that follows.

3.1. The Effect of Replacing Perfect Forecasts by Alternative Forecasts

We now assume that the system (3), (4) has been designed to satisfy the criteria
of section 2.1. We wish to consider the effect of replacing the perfect forecast f(t)
in equations (3) and (4) by an alternative forecast £7(t). Specifically we wish to

consider 2 types of alternative forecast

viz £7(t) =X£(t) (7) wheredgé 1 is some bias factor representing
optimism or pessimism in forecasting and a forecast generated by exponential smoothing
[ ]
£/ = i(t)-£7(t) (8)
T
Thus the system we now wish to consider is
x°=Fx" + 48" 4 B2 €D
27 = Gx” + hf’ (10)

Our approach will be to consider the difference in response between the systems
(3), (4) and (9), (10) to sinusoidal variations about some operating point

f(io,go,go) where in accordance with (5) and (6) we have

o =3 ( B
2, =(1-P) " 4 * byi, (11)
2, = Gx + hi (12)

We thus assume that the variables x, x7,z, z’,i, f and f are the relevant deviations

from this operating point.

The State Matrix of the system (3), (4) is F as is that of the system (7), (9) (10)
whilst that of the system (8), (9), (10) is the matrix

.
o T
€ (2
( )

¢4y F

whence since Tis >0 it is clear that the eigenvalues of this matrix are those of the
matrix F plus an additional eigenvalue - %\ Therefore if the system (3), (4) is stable
so is that of (7), (9), (10) or (8), (9), (10). We thus conclude that the alternative

forecasts have no effect on the stability of the system.
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We now denote in the usual way the laplace transform of x(t) as x(s) and set

m(s) = x(s) -
n(s)

[l
™
~
w
~r
1

Taking Laplace transforms we have from (3) and (8)

( )

sm(s) = Fm(s) + d ¢ f(s) - £7(s) ) (13)
1) mRule) +R ) - P ) (14)
)

or mls) = k(s) (£(s) - £°(s) ) (15)

() =1() (£ (8) - £7(s)) (16)
where

k(s) = (sI - F)d a7

1{s) = Gk() i+ h (18)

. i e jut
We now proceed to examine the response of m and n to a harmonic input e = e

denote the i th component of m by m, we then have that the amplitudes of the steady

state responses are given by

2 2 2
kGw [ fGw - tgw T a9

- 2
|1; G| [fGw - £ Gw) | (20)

=]
.
I

We now consider the values of (19) and (20) for frequencies above the cutoff

frequency.

3.2. High Frequency GJN%)

In order.to deal with this case we need first to consider the effect of a noise
inputs d e and h e Jut on the system (3), (4). Such noise inputs would arise
naturally in connexion with forecast error, or might equally be regarded as a test
noise signal. In either case as we remarked in section 2.1. the low pass filter
assumption implies that the amplitude of response of the rate equations to such signals

is negligible for W)LL)C.

We therefore consider the system (3), (4) to be perturbed about the equilibrium
point x , z , i, f(t) = i by such noise signals. By virtue of equations (5) and (6)
if x and z denote deviations from the equilibrium point the system becomes
o 28E (21)

jwt
e’ (22)

[
]

1= |a

+

"

z2=6

Preceeding to Laplace transforms we find

2 2
X. = . (Jw
| x| K () (23)

1
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|2 - 46w '2 (24)

where k(jw) and 1(jw) are as defined in (14) and (15)

By virtue of the assumption that the system acts as a low pass filter we have

from (24) that

= |1 ;G j 0 for Wi, (25)

i

It is interesting to note that (25) can only be satisfied in a system using
Perfect Forecasts if either the moduli of the coefficients of f(t) in equation (4)
are considerably less than 1 or if the forecasts are filtered. In practice this
filtering is secured in business systems by the use of forecasts of e.g. total demand

for several months ahead which effectively removes high frequency components.

Turning to the factor

2
]f(jm) - £/ (jw) l in equations (19) and (20)
we find that for forecasts of the form (7)

2
[£Gw - £7Go | - )’ (26)
whilst for those of form (8) where f (s) = 17 Ts
2 : 2
aad « £ H e Rt
ff(Jm) £ (Jus)’ = Ie o (27)
= 2-2casaw+ 2Tsina Tub (28)

Ezuf

The maximum value of (28) is for Tw)>l equal to 2 whilst for Bw<l it is 4.

Since we are generally interested in fairly limited amounts of bias i.e. 1xlgl
we conclude that (26)1

Thus from (20) we have that the difference between the systems for a unit high

frequency input
P
s TR SR B | 1, G | (29)

In practice the amplitude of high frequency components of i(t) is generally less

than 0.5 ié The amplitude of the difference n, is accordingly given by

esers, ool
'ni | & 0.5%2 k. 1i(3m)

< lli(j"’) [io (30)
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By virtue of (25) then we conclude that

<<

n.
45

Generally the RATES which correspond to z are of the same order of magnitude as
io so we may conclude that for frequenCiesyuh there is negligible difference between
the RATES generated by the system (3), (4) and those generated by the system (9), (10)
whichever form of forecast £7(t) is used. As far as those staté variables that
represent system states that we wish to control however such as stocks or cash are
concerned, however changes in them are caused only by the interaction of the exogenous
input and the internally generated RATES. We therefore conclude that for these state
variables (as distinct perhaps from state variables representing SMOOTHS, etc.) there
is negligible difference in the behaviour of the 2 systems. Thus in all essential

respects the systems behave more or less identically for Qf)“t.

4.1. Low Frequency Response W( UJC

For the purposes of low frequency analysis we assume that“g is small enough to
permit the system transfer functions to be expanded as a power series in s and that
terms of order 32 and above can be neglected. This is equivalent to assuming that
the parameters of the system particularly time delays are sufficiently small relative
to 1%:— to render this approximation valid. In general this does not appear to be
a problem in actual systems except perhaps where unusually long time delays are
encountered. In such cases the analysis given below is easily extended to higher

order transfer functionms.

We therefore assume that the transfer function corresponding to equation (3)

takes the form

x(s) = A(s) i(s) + B(s) f(s) (31)
and that corresponding to equation (9)
x’(s) = A(s) i(s) + B(s) £7(s) (32)

Writing A(s) = a, *a; st
B(s) = b, El s+ . ;
we have from (31) that, since e $ =214+ as+

as. . .
and f(s) = e>°i(s) (since we are concerned only with the steady state response to

sinusoids)
x(s) = [go +as+hb +bas+ O(Sz)Ji(s) (33)
[{EO*EO} e . 0(82;1 i(s) (34)
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Application of the final value theorem shows that the steady state response of the
system (3), (4) is given by (Eo + Eﬂ) = p (35) by virtue of (6). Similarly the velocity
error i.e. the difference x(t) - pt when the system is subjected to a unit ramp input

i(t) = t is given by the coefficient of s, i.e.
{.El +b *+b, 31 (36)
We thus see that by suitable choice of the forecast horizon a the velocity error of
the system can be reduced-possibly to zero. In practice with simple linear systems it

it indeed generally possible to secure this. A zero velocity error is desirable both

because a unit ramp is a useful test input and also because we then have from (34) and
(35)
x(s) = p i(s) (37)

i.e. the amplitude of the response of x(s) to low frequency noise is given by p, i.e.
there is no undesirable amplification of low frequency inputs.

Turning to the low frequency response of systems using alternative forecasts we

find that for those of type (7) we have
i 2l s
x"(s) -[Eg°+§03 + {51 i hoa} s + (1) [Eg[lgl-'-bo 6}5+0(s ;Jl(s) (38)
and for those of form (8) we have
- 7 2‘
x (s) = BE0+P'°J +{§_1+]gl+§°e‘1}—'b&'[+a}s+0(s )J i(s) (39)
where the coefficients of s° and s1 have the same interpretation as above.
For the system (38) we have therefore that
x (s) - x(s) = CG-1) [20 +'{Elﬂ’,:,a‘i‘rs:]i(s) (40)
For low frequency inputs we have accordingly

2 2 2
2 2
= (h-1) (?o,i + (bl,i+bo a) W ) (41)

%7 (3w -x (3

where b . denotes the i th component of Eo etc.,
’

Clearly iflx'(jﬂ)i = xi(jd)l is small compared with the equilibrium value . it is
)

reasonable to describe the behaviour of the alternative system as being little changed.

If we assume that a fairly extreme value for a low frequency component is say
Q.5 io and that a difference of up to 107 of the equilibrium value of the i th component

is acceptable i.e. 0.1 x p; X io and thatlﬁ-l\.$0.25 we have from (41) that for there to

be no significant difference between the systems
2

2} 2
0.1 x pi>/0.25 * b (bl,i+b ia) h‘]c

CA
o,i o,

5 2 2 2
B pi; 2.5 % V/;O,i + (bl,i+bo,ia) W (42)
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In actual systems the values of P; for variables of interest such as 1nventory are

usually around 4 whilst the value of b0 i is usually not much greater than 1. E is

generally about 25. Condition (42) is therefore likely to be satisfied in practice if
Tig Tt (43)
25 . 3
Assuming that the velocity error of the system with perfect forecasts is zero this

is equivalent from (39) to

< 25 (44)

a:
1.1

If we consider the effect of low frequency structural noise on the system we find
that the transfer function for such noise is a,6 *+ a;s.
Since amplication of such noise is clearly undesirable we may conclude along
the lines of section 3.2 that (44) is a desirable design criterion so we may expect it

to be fulfilled in practice.
Turning to the system (39) we have that
x () - Hls) = b_(avm)s + 0(s%) (45)

It follows then that

Pt w’ (46)

X :‘(ju.‘.) i xi(Ju:)

Considering as above a sinusoidal disturbance of amplitude 0.5 io and assuming that

difference between the systems of up to 10%Z of the equilibrium value of x. is acceptable

we find
0.1 p.i 3 0.25 10bo,i(a+tjh£ (47)
Tajing ‘bo,l - 1. p{&&, 1 JL 25 as before we have
w
40 3y (a+D) (48) c

We thus see that unless (a+L)» 40 there is likely to be little difference between
a system using forecasts derived via exponential smoothing and a system using perfect

forecasts.

In this case however it is clear that since at low frequency if terms of 0(52) are
negligible the difference between the systems arises because a system with perfect
forecasts can have negligible velocity error whereas a system using a forecast generated
by exponential smoothing will usually have a finite velocity error. This suggests that
a system using a forecast generated by exponential smoothing can be made to approximate
even more closely to one in which perfect forecasts are used by altering the system SO
that it has negligibly velocity error whilst leaving its high frequency characteristics

essentially unchanged. An obvious approach is the addition of integral control action tc

the proportional control normally used in most system dynamics work.
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The advantage of this approach is that it can be extended to systems where at
low frequency terms in %1 cannot be neglected. 1In this case a system with perfect
forecasts cannot necessarily be tailored to have negligible acceleration error without
redesign of the system control structure in which case very little extra effort is requi:
to redesign the system to function satisfactorily with forecasts derived via exponential

smoothing.

It is perhaps worth noting that such redesign need mot necessarily be carried out
explicitly but is part and parcel of the usual redesign process which aims to produce,
as noted in section 2.1, systems which have negligible velocity error and in which the
amplitude of variation of the state variables at low frequencies is of the order p

times amplitude of variation of the input. (Forrester, 1961), (Coyle, 1974).

5.1. Interpretation of the Results

The discussion above goes some way towards answering the questions posed in section
1l.1. For linear systems at least the Design Criteria generally applied in a system
dynamics study tend to make the system relatively insensitive to the types of forecast
error considered. Thus at high frequencies as shown by section 3.2. the requirement
that the system be insensitive to both high frequency inputs and high frequency noise
implies that the system be more or less unaffected by the replacement of a Perfect

Forecast either by a forecast with bias or by a forecast derived by smoothing.

At low frequencies it follows from the discussion of section 4.1. that, given the
values of parameters that usually occur, the system is able to function acceptably with
forecasts with substantial bias. Equally equation (48) shows that unless an accurate
forecast can be made a considerable period ahead that there is little adﬁautage to be

gained by using it, rather than a forecast derived by smoothing.

Given the Design Criteria adopted the advantages of a perfect forecast boil down
to allowing zero velocity error to be obtained. The importance of obtaining acceptably
low velocity error at low frequencies is hopefully obvious from the discussion. As
indicated in the previous section however an acceptably low velocity error may be obtaine
by judicious choice of control laws for the system and the procedure can both be extended
to obtain a suitably low acceleration error, if necessary, and also has the advantage

of being an integral part of the usual SD approach to system redesign.

Since the forecasting process in industry is usually both time consuming and
contentious, there are therefore benefits to be obtained by replacing the forecast thus
derived by a simple smoothed average and carrying out any necessary system redesign
to ensure acceptable performance. This is perhaps particularly desirable because in
the real life situation forecasting error is rarely the pure statistical phenomenon of
a random term with zero mean but also involves an often substantial bias due to the

aspirations and fears of the forecaster. As we have seen a system designed according to
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the usual S.D. criteria can absorb considerable amounts of bias without serious effects,
but the problem can be circumvented by use of a forecast derived by exponential smoothing
Alternatively the selection of control laws so as to give satisfactory performance even
with substantially biased forecasts may be possible if the control system is suitably

designed, e.g. by the incorporation of a suitable integral control.

In summary then Perfect Forecasts offer little advantage even in theory for the
type of systems considered because the Bystem must strongly attenuate high frequency
components of the forecast while at low frequencies the errors induced by imperfect
forecasts are less serious and can anyway be reduced by careful design of the system in

accordance with usual S.D. principles..

5.2 Applicability of Results

The results as derived are applicable only to single input linear systems in which
a single forecast is made. Since superposition is valid for linear systems however the
extension to systems with several inputs is straightforward. The reasons for considerin
that linear systems provide satisfactory approximation to many non-linear models are

given in section 1.1.

It is obvious however that the results depend crucially on the Design Criteria of
section 2.1. particularly the low pass filter assumption and the assumption that a
continuous linear model is a good approximation to the system. Since the sempling
period in business systems is gemerally short by comparison with the settling time a
continuous model is likely to be an acceptable approximation as long as there are not
substantial discontinuities in the underlying decision process. Thus the results cannof
be expected to apply to the type of capacity investment problem which involves large

and infrequent investments in capacity, e.g. power stations.

Equally there are good reasons why the low pass filter assumption should have wide
applicability. Within an organisation RATES involving physical flows cannot be rapidly
varied (Forrester, 1961) whilst, even if the RATES concerned are the responsibility of
outsiders such as suppliers, commercial prudence often dictates that the Company do as

it would be dome by.

The most obvious area in which the low pass filter concept does not apply would
accordingly appear to be that in which the RATES involve money transactions that do not
involve actual physical flows, i.e. transactions of a speculative nature in financial
or commodity markets. In addition this analysis cannot be applied without further
refinement to systems where goods are produced to order with short lead times, e.g.

the manufacture of fashion fabrics.
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