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Abstract 
 
 The purpose of this paper is to present the results of an experiment conducted at a 

secondary school in the US in which two mathematics teachers were enlisted to teach a series of 

6 lessons introducing System Dynamics modeling as a method to help students better understand 

the difference between the structures that produce linear versus exponential change over time in 

real world scenarios.  There are very few formal research studies attempting to document 

learning outcomes from using System Dynamics modeling in mathematics classes at the 

secondary school level.  Four algebra II classes were involved in the study, an experimental and 

control class for each of the two participating teachers.  The teachers administered pre- and post- 

assessments to each of the four classes and taught 6 experimental lessons to their classes that 

were designated as experimental.  Due to a number of difficulties that contributed to a very 

limited time to conduct the assessments and lessons the pre- and post-assessments did not 

produce significant differences between the experimental and control groups.  However, the 

results collected on some of the lessons indicated that SD modeling might potentially reduce the 

gap in performance between students who are more adept at traditional math and those who are 

not.  Videotaped think-aloud protocols used with two pairs of students, one from each 

experimental group indicated that, even with such a brief introduction, students can build correct 

SD models and correctly analyze the behavior for a problem that is slightly beyond the typical 

problem studied an algebra II.  The experiment should be repeated over a longer period of time 
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and incorporated into the regular curriculum to overcome most of the problems that arose with 

the execution of this experiment.  This paper includes a great deal of information about the 

experiment that could be used by others interested in improving the method described here.  It is 

hoped future experiments will be conducted to add to the literature documenting the learning 

outcomes that SD modeling and analysis provides.  

A. Introduction 
 

“Concepts and methods enabled by rapid advances of information technologies are 
enabling us to understand aspects of the real world where events and actions have 
multiple causes and consequences, and where order and structure co-exist at many 
different scales of time, space and organization. Within this complexity 
framework, critical behaviors that were systematically ignored by classical science 
can now be included as essential elements that account for many observed aspects 
of our world–for example, global phenomena that require multiple physical, 
biological, social, and mathematical perspectives”  (Kaput, Bar-Yam, Jacobson, 
Jakobsson, Lemke, Wilensky, 2000, p 1). 
 
The literature indicates a pressing need for adults to become better at understanding 

complex systemic behavior (Homer & Hirsch, 2006; Hung, 2008; Sterman, 2000, 2011).  If 

understanding complex systemic behavior is so important for adults, it seems reasonable to 

expect mainstream K-12 education to begin to incorporate activities that give students experience 

working with “wicked” problems.   The importance of including the study of complex systems in 

mainstream education is increasingly appearing in research articles within the last decade, even 

for elementary school students (English, 2007).  Jacobson and Wilensky (2006) state,  

“The conceptual basis of complex systems ideas reflects a dramatic change in 
perspective that is increasingly important for students to develop as it opens new 
intellectual horizons, new explanatory frameworks, and new methodologies that 
are becoming of central importance in scientific and professional environments” 
(p. 12). 
 
Although there are a variety of analytical methods that can be applied to the study of 

complex systems problems, the focus of this paper is on the system dynamics method. 
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Some Current Efforts in K-12 Education in the US 

The Waters Foundation1 has had success working with elementary and middle school 

teachers, training them to use behavior over time graphs, their “Habits of a Systems Thinker” 

cards, and Iceberg and Ladder of Inference analysis techniques to get teachers to begin using 

more holistic approaches to their content.  Their goal is to help “build systems thinking capacity” 

in the teachers they train.  This effort is scaling up. 

The Creative Learning Exchange2 has increased curricular offerings for K-12 teachers by 

commissioning curriculum development of models and lessons based on Forrester’s statements 

regarding the nature of systems (Forrester, 2009).   These lessons can be accessed on their 

website.  Quaden, Ticotsky, & Lyneis (2008) have developed the Connection Circle to help 

elementary and middle school teachers and students analyze feedback loops in scenarios 

involving more than two components.  These three gifted teachers have developed simple 

System Dynamics (SD) modeling lessons that help students in grades 5 – 8 (ages 11– 14 years) 

understand the importance of feedback in certain real-world scenarios highlighting the difference 

between linear and exponential patterns of change over time.   CC Modeling Systems3 also offers 

online courses for math and science teachers who want to learn how to create small SD models 

to use in their curriculum. 

   What is missing?  Research on the efficacy of the SD modeling approach for K-12 

education is missing.  Mandinach and Cline (1993) conducted quite a few studies working with 

over 32 secondary school math, science, and social studies teachers incorporating SD into their 

curriculum.  They discussed three levels of modeling using the STELLA software with high 

                                                
1 www.watersfoundation.org 
2 www.clexchange.org 
3 www.ccmodelingsystems.com 
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school students (ages 15 – 18 years).  The first they called parameter manipulation and referred 

to this as the least cognitively demanding.   Next they describe what they call constrained 

modeling, where students build a model to solve a specifically assigned problem.  Finally, they 

describe “epitome” modeling, the most cognitively demanding, where students build original 

models for an idea they conceive.  The needed modeling expertise of the teacher, as well as the 

student, increases significantly from the first to the third type of modeling, as does the amount of 

time that must be dedicated to the modeling activity in the curriculum.   In a later article, 

Mandinach and Cline (2000) discuss the many difficulties that they encountered in trying to 

conduct their research and why they felt that this innovative approach was not destined to appear 

in mainstream education any time soon. 

   Yet, the need to document the value of the SD approach to learning about complex 

systems is reaching a critical stage.  Those who are familiar with the approach appreciate what 

SD modeling can offer, but without the strength of research support to document what, 

heretofore, have been mostly anecdotal success stories, it will not be possible to convince 

educational decision-makers that efforts should be made to include this “new” approach in 

classrooms.  

  So this author undertook the design and execution of a classroom experiment to 

determine if the use of SD modeling might show an improvement in understanding a concept 

that is already in the algebra II curriculum, the difference between the underlying process that 

produces linear versus exponential change over time.  This effort was to stay close to the current 

curriculum as a bridge to moving students toward the study of a slightly more difficult problem 

that would be outside their normal algebra II curriculum.  It was hoped this might indicate a 
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more immediate way to begin incorporating SD modeling into a traditional algebra II course 

without requiring much modification on the part of the teacher.  

The rest of this paper describes the learning theory supporting the design of the 

experimental lessons, the importance of having students understand the function concept in 

mathematics, the school environment in which the experiment was conducted, the research 

question, the method used to conduct the experiment, the various data collected and analyzed, 

and a discussion of some of the results and lessons learned. 

B. The Experiment 
 

The study comprises an account of the student experience and the learning of the students 

as an introductory sequence of lessons was used to prepare students to build (in their final 

lesson) a model of a problem involving a combination of linear and exponential change over 

time (a situation not covered in algebra II).   Design of the experimental lesson sequence and 

classroom environment were guided, in broad terms, by the learning theories developed by Lev 

Vygotsky and Jerome Bruner, as described below. 

Theoretical Foundations 

Learning Theory 

Lev Vygotsky suggested that learning should be a socially active endeavor, where 

students are expressing their thinking, and the teacher is facilitating the process.  This interaction 

should be cooperative and collaborative (i.e., the teacher uses demonstrations and leading 

questions) to be effective.  Teachers do not transmit concepts.  “If concept development is to be 

effective in the formation of scientific concepts [those new ideas learned in school] instruction 

must be designed to foster conscious awareness of concept form and structure and thereby allow 
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for individual access and control over acquired scientific concepts” (Vygotsky in Daniels, Cole, 

& Wertsch, 2007, p. 312).  

One of Vygotsky’s major contributions to learning theory he called the “Zone of 

Proximal Development” (ZPD).  The ZPD is conceived of as a gap between what the student 

could learn by him/herself and what he/she could learn with the help of more knowledgeable 

peers and/or the teacher.  Vygotsky indicated that the trajectories for individual student learning 

in this zone are quite open and will follow dynamic and divergent paths.   The objective of the 

“instruction” is, however, to help the student eventually internalize the new knowledge.  

Vygotsky (1978) indicated that essential (good) learning should create a ZPD (“awaken a variety 

of internal developmental processes in the child that are activated by working cooperatively with 

peers and other people in his/her environment”, p. 90) that is forward looking, developmentally, 

rather than testing, which is backward (ineffective) looking.   In this way, Vygotsky said, once 

the processes within the child become internalized they lead to independent developmental 

achievement (Vygotsky, 1997, italics added). 

Jerome Bruner is an important interpreter of Vygotsky, developing Vygotsky’s theory in 

certain directions.  Still relevant today is his early book “Toward a Theory of Instruction” 

(Bruner, 1966) in which he presented three modes of representation that are needed to help 

students acquire new ideas with understanding.  The first mode is enactive, wherein students 

manipulate concrete objects to gain an understanding of the elements in the system and how they 

might be related.  The second mode is iconic.   In this mode students use some pictorial 

representation of the system they experienced in the enactive mode, to capture the structure or 

behavior that was present in the activity.  Creating and reading graphs are examples within this 

mode, as is the construction of various diagrams.  This mode is still quite concrete – the iconic 
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representation is directly connected to a physical activity.  The final mode is symbolic, wherein 

students use symbols, such as numbers, computational symbols, or words to start to abstract the 

ideas from the concrete to other similar patterns existing in problems they do not physically 

experience.  STELLA modeling, with pre-activities involving physical simulation, constitutes 

part of a learning experience that exploits all three of Bruner’s modes. 

The team method of building System Dynamics models, used consistently in K-12, is 

well grounded in these learning theories as an effective learning strategy.   Students work 

collaboratively with each other (and with teacher facilitation) to determine what components to 

include in the model, how they should be connected, whether the simulation results are 

reasonable, how modifications to the values or to the structure modify the system behavior, and 

recommend possible “solutions” or policies that might transform the system to produce more 

desirable behavior.  This focused, active interaction with the modeling process aligns well with 

Vygotsky’s description of lessons that would produce effective concept development. 

The experimental lessons focus on strengthening student conceptual understanding of 

linear and exponential functions, the concept of function being foundational in algebra. 

The Importance of the Function Concept in Mathematics 

“The concept of function is central to undergraduate mathematics, foundational to 
modern mathematics, and essential in related areas of the sciences. A strong 
understanding of the function concept is also essential for any student hoping to 
understand calculus – a critical course for the development of future scientists, 
engineers, and mathematicians” (Oehrtman, Carlson, & Thompson, 2008, p. 27).  
 

  Many mathematics education researchers present studies attempting to determine 

whether students understand the abstract definition of function, i.e., that a function is a 

special relationship between two variables whereby each value of one (the independent 

variable) within a specified range maps to at most one value of the other (the dependent 
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variable).  System Dynamics fits into a broader, more dynamic, more applications 

oriented view of a function.  Using the stock/flow diagramming structure of SD many of 

the continuous elementary functions used in an algebra classroom can be constructed.  

Those stock/flow structures can serve as an alternate, two-dimensional symbolic 

representation for the elementary functions.  The connection between different 

representations of functions is essential in helping student build a stronger understanding 

of the function concept (Leinhardt, Zaslavsky, & Stein, 1990; Keller & Hirsh, 1998; 

Yerushalmy, 1991).   

The elementary functions that are studied in most second year algebra classes in 

secondary school represent different patterns of change over time that occur often enough that 

mathematics educators think students should be able to recognize them whenever they arise in 

class, whether by viewing the graph or by solving a story problem.   But story problems tend to 

be simplified due to the limitations students have in understanding closed form equations.  

“What makes teaching (and learning) of the translation skills so difficult is that 
behind them there are many unarticulated mental processes that guide one in 
constructing a new equation on paper.  These processes are not identical with the 
symbols: in fact, the symbols themselves, as they appear on the blackboard or in a 
book, communicate to the student very little about the processes used to produce 
them” (Clement, Lockhead, & Monk, 1981, p. 289). 
  

 These functions are generally only called to represent change in one direction 

(increase or decrease, never both).  But systems are not so restricted.  So for students to be 

able to study problems involving systems, it should not be expected that they jump from the 

graph or story description directly to a “correct” symbolic representation immediately.  

Kaput (1999) indicated that functions are used to build mathematical systems through 

successive approximations, where each iteration tries to improve the structure built in an 

attempt to understand a problem under study.  This process involves modeling and some 
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researchers argue that modeling problems/phenomena is the primary reason to study 

algebra. 

   The SD stock/flow function diagram is built with a focus on how the structure produces 

the function’s characteristic pattern of change over time.  This structure opens up a 

representation that has been used successfully to provide a conceptual introduction to elementary 

calculus concepts within algebra classes.  It also can provide a vehicle for enabling students to 

use the elementary function structures as building blocks that will allow them to study more 

realistic applications by having them build models that combine these elementary function 

structures, as small Lego structures can be used to build larger Lego systems. 

  The lessons for this study focus on increasing student understanding of linear and 

exponential change over time.  Two lessons are devoted to introducing and then enhancing 

student understanding of the behavior of each function.  The first of these two lessons uses a 

kinesthetic activity to introduce the primary dynamic characteristic of the function, that is, 

coupling the behavior with a specific type of rate of change (constant for linear, proportional to 

current value for exponential).   

Students follow specific directions in these kinesthetic lessons initially, then are 

expected to produce their own actions to generate the same function behavior emphasized in 

the lesson.  The attempt is to move students from a “following directions” mode of thinking to 

a “create your own” understanding of the function.  The second function lesson (for each 

function) has students build an SD model that produces the characteristic function behavior 

(with focus on rate of change), following directions given in the lesson.  Students experiment 

with the models and explain the reason the model output changed.  Students, again, are 

expected to create an original model that produces the function behavior under study. 
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Modifying the models gives students more experience with each function’s behavior.  Finally, 

students are given one problem that involves both a constant and a proportional rate of change 

and students, it is hoped, understand the type of function structure needed to capture these 

dynamics as they create one model structure to mathematize the problem.  This lesson is 

designed to move students from the “create your own” understanding on a single function type 

to the “transfer to a new situation” concept of function where they recognize, from the 

description, the types of functions that must be used to solve the new, more complicated 

problem (involving more than one function type). 

In addition to doing the tasks, students will also be expected to explain what they create 

as a culminating activity in each stage of the experimental/intervention instruction.   Explaining 

one’s creations has been shown to “enhance learning and understanding of new knowledge”  

(Chi, DeLeeuw, Chiu, & LaVancher, 1994, p. 469).  Students will be working in teams on most 

of the activities.  Team problem solving is considered a positive learning environment, 

improving student attitude toward mathematics, and fostering more student engagement in 

lessons and with each other (Davidson, 1990; Springer, Stanne, & Donovan, 1999). 

The Teachers and School Environment 

This study was conducted in partnership with the curriculum vice-principal and two 

algebra II teachers at a local high school in Portland, Oregon.  This school serves primarily a 

middle socio-economic population that is 22% minority, and about 24% of its students are 

considered disadvantaged.  It has 56 teachers who serve about 1250 students.  The school has 

no Title I funding.  The students enter the school generally at normal grade level in 

mathematics.  Reporting on state mathematics tests indicate that 79% of the students are 

proficient in mathematics. 
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The two teachers are experienced secondary mathematics teachers with between 14 and 

32 years of experience, respectively, teaching at their current high school.  Each has taught 

algebra II between 10 and15 years, respectively, each is quite comfortable with technology, and 

each has used STELLA model-building briefly in their algebra II classes in the past, and then 

quit using the STELLA software. 

The student segment of this study attempted to determine how well students understood 

an extension of the elementary functions (linear and exponential) as they designed a new 

function that combined the change dynamics associated with the two initial functions.  

The Research Question: 

Can System Dynamics model-building activities aid students in identifying and differentiating 

linear and exponential function behavior over time in the context of a real-world scenario? 

Method 
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Figure 1: Quick overview of the method for the algebra II student experiment discussed in this paper. 
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Figure 1 displays a quick overview of the method for the student experiment.  There 

were 6 lessons for the experimental algebra II class. Two of these lessons fall into the 

“enactive” mode of Bruner’s learning theory, two in the “iconic” mode, and two in the 

“symbolic” mode.  (See supplemental file.)  All lessons require students to work with the topic 

for the lesson and three of the six require the creation of original scenarios and explanations 

dealing with the focus topics.  The enactive mode lessons are intended to determine if students 

have moved from “following directions” mode to the “create your own” thinking about linear 

and exponential functions.  The iconic and symbolic lessons are intended to determine if 

students have moved from “create your own” thinking to being able to “transfer” the function 

concept to a new situation involving more than one function type.  

   A quick overview of the lessons to be used with students will be described below, with 

a more detailed explanation of the lessons in the supplemental file (Appendix A). 

1. (Motion) As a full-class activity the teacher had students move, to produce different types 
of linear motion, in front of a motion detector connected to a computer that projected the 
motion graph on the overhead screen.  As a final problem, an original walking scenario was 
designed by each student and the students explained how one would walk to produce the 
graph they drew.  This problem was “graded” by the researcher. 

 
2. (Linear Models) Using the STELLA software on a classroom set of netbooks students (in 

teams of two) built linear models matching scenario descriptions given on a handout.  A final 
assignment asked students to sketch the stock/flow diagram for an original linear model 
devising their own scenario.  The original model was “graded” by the researcher. 

 
3. (Floor stock/flow activity: Linear functions and exponential functions) The teacher created a 

large stock/flow structure on the floor of the classroom and had the students enter and leave 
the stock in different linear and exponential patterns.  A table of values (number of students 
in the stock) was recorded for each different pattern. 

 
4. (Graphs) Students graphed the values that were recorded in the tables that were produced in 

activity 3 above. 
 
5. (Exponential Models) After the teacher built a stock/flow bank account with simple interest 

model in class students used the classroom set of netbooks to build (in teams of two) various 
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exponential models based on problem descriptions given in their handout.  A final 
assignment asked students to sketch the stock/flow diagram for an original exponential model 
devising their own scenario.  The original model was “graded” by the researcher. 

 
The following day the teacher built a stock/flow bank account model with interest added 
(inflow) and constant withdrawals (outflow) with the aid of students in the class, asking 
students how to build the model and asking them to predict behavior based on changing 
values in the model.  

  
6. (Combine Functions: The Drug Model) A random selection of two pairs4 of students were 

removed from the experimental classes when the rest of the experimental classes were 
working (in teams of two students each) on the drug model lesson.  Each randomly selected 
pair of students built a drug model requiring a constant inflow from an IV drip and 
exponential outflow simulating the body metabolizing and eliminating the drug.  These 
students were videotaped by the researcher.  The rest of the class built the same model, while 
the two pairs of students were being videotaped.  The researcher “graded” the entire drug 
packet for all of the experimental students. 

 
The STELLA diagram for the Drug Model is shown in Figure 2 below.   
 
 
 
 
 
 
 
 
 
 
 

Data and Analysis 

  Originally it was intended to conduct these lessons throughout the first semester of the 

year, but the teachers indicated that the curriculum structure of the algebra II course had changed 

recently and they no longer taught linear and exponential functions as separate units in algebra II.  

So they wanted to conduct the experiment in a brief 3-week unit review just before the first 

semester exam.  The 3-week period was to occur directly after winter break.  Another situation 
                                                
4 Student names were placed in pairs on small papers and selected at random from a container.  The pairing was 
designed to maintain student comfort in working with another student they usually choose to work with, if possible, 
on the task for activity 6.  

0 * 1 

0.005 

Figure 2:  The Drug Model. 
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occurred that pushed the semester exam forward by a week.  So now there would be only two 

weeks between winter break and semester exams.  Yet another situation occurred in that the 

school changed from a modified block schedule (3 – 50 minute class periods and 1 – 90 minute 

class period per week) to alternating block schedule, (alternating 3 – 93 minute classes per week 

and 2 – 93 minute classes per week).  Moreover, there was not a guarantee of 93 minutes, since 

some days involving early dismissal, late arrival, tutor times, or assembly schedules changed 

class periods to either 63 or 75 minutes instead of 93 minutes. 

Due to circumstances beyond the control of the teachers and researcher 2 snow days 

occurred immediately after winter break.   The 6 lessons and the pre- and post-assessments had 

to be executed in 4 class periods of between 63 and 93 minutes each. Consequently, students 

were able to complete only the first 3 (of 4) exercises in the linear and exponential modeling 

lessons.  For one teacher the graphing lesson had to be eliminated due to a very shortened class 

period.  In the drug model lesson there were significant difficulties with the computers and many 

students were only able to complete ¼ of the lesson. 

   It is useful to know the math proficiency level of each of the four classes involved in this 

experiment.  The math proficiency level of the students involved in this experiment was 

measured (only) by using the class mean scores of their first semester assessments in algebra II.  

The results were:  

 
 

 

 

 Teacher 1 Teacher 2 
Experimental 
Class 

83% 
n=21 

69% 
n=22 

Control 
Class 

74% 
n=17 

85% 
n=16 

Table 1: Class mean scores, first semester 2015-2016, for each of the four classes in this experiment.  
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The Pre- and Post-Assessments 

The pre- and post-assessment structures were almost identical in that they contained the 

same number and types of questions, only differing in numeric values or in slight modification of 

question asked (i.e., growth questions changed to decay questions, etc.)  The assessments were 

identified as form A or form B and half of the students in each class received form A and half 

form B for pre-assessment.  Students received the other form for their post-assessment.  There 

were 12 questions on each assessment form.  Since the same assessments were to be used for 

both the experimental and control group students there were some traditional questions 

(questions 5 and 115) as well as some more conceptual questions regarding linear and 

exponential function behavior, although no questions required the use of mathematical equations, 

to answer.  More detail about the assessment questions can be found in the supplemental file 

(Appendix B).  

 Results:  The following tables show the results on the pre- and post-assessments as 

coordinates on a grid.  Each student has his/her own point on the grid.  The first coordinate of 

each point represents the pre-assessment score for the student.  The second coordinate represents 

the post-assessment score for the same student.  Students above the y = x diagonal line indicate 

an improvement in their performance from the pre- to the post-assessment.  Each of the four 

classes, two experimental and two control, has its own plot. 

 

                                                
5 Questions 4, 7, and 9 favored the experimental group.  The rest of the questions 1, 2, 3, 6, 8, 10, and 12 were 
intended to be neutral. 



           17 
           

 

If we combine the two experimental groups and the two control groups and analyze 

individual questions, there was interesting information:  

 
 

 

 

 

  

 

Table 2 showed promising results on a few questions, 6, 9, and 12.  Yet Looking at each 

experimental group compared to its control group the findings tell a slightly different story.  

 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 
Post-Pre 
Experimental 
Group n = 43 

2.3 -1 -1.7 2.3 -8.1 18.6 -8.1 15.4 14.9 3.8 4.1 21.4 

Post-Pre 
Control 
Group  n = 31 

6.1 5 5.5 -1.5 6.1 -3.0 0 7.5 1.5 8.5 -1.8 6.1 

Experimental-
Control -3.8 -6 -7.2 3.8 -14.2 21.6 -8.1 7.9 13.4 -4.7 5.9 15.3 

12 

9 

9 

6 

14 

7 

11 

5 

Figure 3: (Pre, Post) assessments plots for each student in each of the four classes involved in this 
experiment. 

Table 2: Improvement in scores from pre- to post-assessments for the combined experimental and combined 
control groups, and then the improvement of the experimental over the control group on each question. 
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It is apparent from both graphs (Figures 4 and 5) that it is not possible to draw 

conclusions about any overall success of the experimental groups over the control groups on any 

particular question.   

Figure 4: Teacher 1: Experimental pre & post-assessment scores compared to control pre & post-assessment 
scores for each quesion.  Note: question 12 has significant improvement for the experimental group but the 

control group performance was already high and remained high. 
 

Figure 5: Teacher 2: Experimental pre & post-assessment scores compared to control pre & post-assessment 
scores for each question.  Note: : question 12 shows experimental and control groups improving by about the 

same amount. 
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On the given assessment questions 2, 4, 6, 8, 9,10, and 12 fell into the category directly 

relating to an understanding of linear vs exponential change over time. 

• The scores on question 2, draw the graph of the water level in a container when someone is 
filling (emptying) a container at a steady constant pace for 5 seconds, then stopping for 5 
seconds, were pretty high.  There is no reason the experimental group should have done 
more poorly than the control group.  In point of fact, the experimental group for teacher 2 
(with a lower semester 1 algebra II average) performed better on this question than the 
other experimental group (with the higher class average).  Most of the errors involved 
students drawing a diagonal line up instead of down (or vice versa) and/or continuing the 
diagonal line for the second 5 seconds instead of drawing a horizontal segment.   All 
students did, however draw linear segments and not exponential ones.  So, for the purposes 
of the research question, the students did choose the correct function (linear) representation 
for their curves. 

 
• Question 4 gave students a description of a person walking and asked them to select the 

correct distance versus time graph (given 4 choices).  Most of the errors involved not 
paying close attention to the time duration associated with a specific walking strategy. So 
this question did not really differentiate between linear and exponential behavior, since all 
the choices were linear.  It would have been better to include an exponential curve as part of 
one graph choice. 

 
• Question 6 involved describing the value of the slope of an exponential graph over time.  

This was a good question for differentiating between linear and exponential functions, but, 
there was not significant improvement by the experimental group compared to both control 
groups on this question. 

 
• Question 9 involved using a labeled linear STELLA model diagram and asking students if 

the stock value would increase or decrease, and then asked them to select one of 3 graphical 
patterns to represent the increase or decrease.  This was a good question differentiating 
linear and exponential change for the experimental group, but was not really a fair question 
for the control group.  The experimental groups improved, as was expected, but one of the 
control groups improved even more. 

   
• Since students had insufficient time to complete all of the problems for the linear and 

exponential model lessons. Some important relationships (assessed, for example, in 
questions 8 – does doubling the growth rate double the growth amount in 5 years - or 
question 10 – will a linear payment plan or an exponential payment plan pay off a loan 
faster) were not experienced. 

  
• Question 12 held great promise.  It asked students to identify each of 5 short scenarios as 

representing linear or exponential change over time.  Both experimental groups improved, 
one significantly (over 30%), but one control group had high scores already (and remained 
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high) and the other control group improved almost as much as the experimental group for 
that same teacher. 

 
• Questions 3 and 7 tried to assess how a quantity would change based on relative size of 

inflow versus outflow and so were not directly useful for the research question.  With the 
problems that occurred on the drug lesson (the only lesson that contained both an inflow 
and an outflow that all students were required to complete) there was insufficient time to 
practice, and so to develop an intuition for that concept. 

 
Data from The Lessons 

 Motion Detector:  The graded question involved giving each student a graph containing two 

points, asking the students to connect the two points using between 2 and 4 linear segments, and 

then to explain the walking motion a person would have to complete to produce the graph drawn.  

3 points were awarded for drawing a correct graph and 4 points were awarded for describing the 

walking motion correctly.  The results of this assessment are shown below.   

 

 

 

 

Constructing an original linear STELLA model: The graded question required that students select a 

scenario that increased or decreased in a linear fashion over time.  They were to sketch the 

appropriate STELLA diagram and label it (3 points), indicate the values and units for the stock 

and the flow (3 points), indicate whether the stock value would increase or decrease over time 

and how they could tell from the diagram (2 points), and how they knew the stock would change 

linearly (2 points).  Note: students did not actually build this model on the computer. 

 

Experimental Groups 
Teacher 1 
n = 20 89% 

Teacher 2 
n = 22 

 
79% 

Table 3: Mean scores for each experimental class on the motion detector problem. 
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Constructing an original exponential STELLA model: The graded question required that students 

select a scenario that increased or decreased in an exponential fashion over time.  They were to 

sketch the appropriate STELLA diagram and label it (3 points), indicate the values/formula and 

units for the stock and the flow (3 points), value for the converter (1 point), indicate whether the 

stock value would increase or decrease over time and how they could tell from the diagram (2 

points), and how they knew the stock would change exponentially (2 points).  Note: students did 

not actually build this model on the computer. 

 

 

 

 

 Students worked on the first 2 models for the linear and exponential lessons in pairs.  

That work would be considered at the “following directions” stage of the learning framework.  

The 3rd problem in each lesson, however, was to design an original growth or decay model of 

their choosing, label the model, indicate how the model should be defined (i.e., the values or 

formulas needed) and explain why the model would show growth/decay and why the stock 

should increase/decrease in a linear/exponential fashion.  Success on these exercises would 

Experimental Groups 
Teacher 1 
n = 20 80% 

Teacher 2 
n = 22 

 
75% 

Experimental Groups 
Teacher 1 
n = 20 75% 

Teacher 2 
n = 22 

 
76% 

Table 4: Mean scores for each experimental class on the linear modeling problem. 

Table 5: Mean scores for each experimental class on the exponential modeling problem. 
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demonstrate that those students had progressed to the “create your own” stage of the learning 

framework, since they are transferring their understanding of linear and/or exponential structure 

to a new situation, defining the model correctly, and correctly indicating why the model should 

produce the desired pattern of growth/decay over time.   

 Building the drug model:  Due to technical problems only the first 2 questions on the student 

packets were graded.  The first question required that students read the description of the 

scenario and sketch the STELLA diagram that would capture the details of the scenario.  (The 

scenario required a constant inflow and an exponential outflow for the stock.)  The diagram was 

graded (4 points) as indicated in the table below (1 point for a diagram that contained an inflow 

and an outflow, 1 point if the inflow was constant and the outflow was exponential, 1 point if the 

diagram was labeled correctly, and 1 point if the correct values were indicated for each icon).  

Students were then to predict what they thought the graph of the stock value would be over time. 

Then students were to build the model on the computer and copy the simulation results on the 

same grid as the prediction graph.  The 2 graphs were given a total of 1 point. 

 
 

Theoretically, those students who correctly designed the drug model and simulated it 

would have moved to the “transfer” stage of the learning framework because they demonstrated 

that they understood linear and exponential behavior sufficiently to create a diagram that 

Experimental Groups 

 Stock, 
In/outf 

Con in, 
ExpOu 

labels values Pred 
Run 

Teacher 1  
n = 21 

97% 80% 34% 39% 57% 

Teacher 2  
n = 17 

68% 62% 26% 32% 44% 

Table 6: Mean scores for each experimental call on the sub-parts of the first and second problem of the drug model 
lesson. 
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contains a constant flow (and linear behavior in the stock, if there were no outflow) and an 

exponential flow.  Moreover, they understood that the outflow had to be exponential and the 

inflow constant.  This would satisfy the “transfer” stage since students are applying their 

understanding of linear and exponential behavior to a completely new scenario involving both 

functions, something they had not dealt with in the past. 

Results of Videotape of two pairs of students from each experimental class 

Additionally, for the drug model, two pairs of students (one from each experimental 

class) were videotaped, separately, using a think-aloud task-structured protocol to determine how 

they thought about the model as they were creating it.  The videotapes were transcribed and 

analyzed using Lesh and Lehrer’s (2000) videotaping analysis framework to determine if 

students understood the difference between linear and exponential functions and could interpret a 

more sophisticated problem involving both types of functions. 

The pair was working on the drug lesson (and being videotaped by the researcher) at the 

same time their algebra II class was working on the same lesson with their algebra II teacher.  

Each student had a “Drug Model Lesson” packet to read and work from for this exercise.  

Students were to build and exercise the drug model while using think-aloud-protocol. 

1. Overall Purpose 1:  To capture the thinking of the students as they decided how to construct 
the stock/flow diagram to capture the behavior of the following problem: 

 
“You are continuing your work as a medical resident at a local hospital.  You are 
again working in the emergency room when a patient arrives and needs medical 
attention.  For this patient you decide you must insert an IV drip into the person’s arm 
in order to administer a therapeutic drug.  You set the IV drip so it will allow a 
constant inflow of 1 g/min of the drug into the person’s blood system.  The patient, 
you estimate, will eliminate 0.55 % of the drug in his system each minute. (Be 
careful, 0.55% is less than 1%).” 
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a. A subordinate purpose was to determine if the students could construct a stock/flow 
diagram that had the students select a stock and identify it as the amount of drug in the 
body, and construct a constant inflow toward the stock and an exponential outflow from 
the stock. Note that the generic exponential growth and exponential decay stock/flow 
diagrams were shown in a boxed display at the top of the paper, for student reference. 

 
• Team 1 produced a correct stock/flow structure on their initial attempt.   

 
• Team 2 started out with an incorrect inflow structure (exponential instead of constant), 

but realized since the inflow was a constant they need to remove the exponential 
inflow structure and replace it with a constant flow structure.  (They redrew the inflow 
correctly.)  They also defined the model components correctly.  

 
2. Overall Purpose 2:  To determine if students can explain what is happening with the 

dynamics of the problem that causes the shape of the stock graph to be produced when the 
model is simulated?  That is, can the students interpret the model output, relating it to the real 
world problem?  

 
a. It is typical in System Dynamics modeling lessons to request that students anticipate 

model behavior before simulation runs are executed.  Most students, initially, have a 
great deal of trouble doing this, as it is not something that is typically asked of them in 
their math classes.  This situation was no different. 

   
• The first pair of students drew an exponential growth curve.  The curve was incorrect.  

  
• The second pair created a linear graph where they moved by blocks, in time, and 

increased the next point vertically by 1 block but then subtracted .5 of a block from 
that, creating a line that had essentially a slope of .5 of a block.  This curve was 
incorrect on many levels.  (Note: The default STELLA graph pad is divided into 16 
grid blocks covering the entire domain and range for a given model component 
output.) 

 
b. Students were then asked to explain the result the simulation produced (whose 

appearance showed an exponential convergence upward from 0 to about 173 g, reaching 
steady state about 1/3 the way through the simulation run). 

 
•   The first pair of students reached a reasonable conclusion.  In the packet the students 

wrote: “The medicine being eliminated slowly approaches the value of the medicine 
entering but never will reach the same value or decrease.” Unfortunately, they did not 
explain why the medicine level should not decrease.  But it is a valuable insight that 
they did consider this option. 

 
• The second pair, after exclaiming how different the simulation graph was from their 

prediction, came to a reasonable explanation for the shape of the simulation graph.  
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The students observed the graph, then set up a table with the drug in the system, the 
inflow value and the outflow value.  In the packet the students wrote: “The inflow is 
constant but the outflow is exponential so as more drugs enter the system the outflow 
at a rate of .55% the outflow will grow to be the same as the inflow.” 

 
3. Overall Purpose 3: The final objective was to determine if the students were becoming 

comfortable enough understanding the model dynamics that they could correctly predict what 
would happen to the graphical model output if a modification of the model was made.  The 
following description was given to the students: 

 
“A complication occurs with this patient about 8 hours after the IV is administered.  
One of his kidneys quits functioning, causing the elimination rate to reduce to half.  
Predict what you think will happen to the drug level in the patient’s body, recording 
your prediction on the grid below.” 

	
Both pairs correctly predicted the new behavior and were able to identify where the model 

needed to be modified, and how the definition of the selected component needed to be modified.   

• Team 1: [The students ran out of time.  They did not have time to see the simulation run, 
so they were not able to check their prediction.  Both students drew prediction graphs in 
their lesson packet that indicated an initial jump upward at 8 hours followed by a leveling 
off of the drug at a higher equilibrium.  This is the correct behavior the model would have 
produced.] 

 
• Team 2: These students drew both the prediction (using a dotted curve) and the actual 

simulation run (using a solid curve).  The dotted curve increased in a more gradual 
fashion, indicating a smoother upward transition at 8 hours, than the simulation graph 
that made a more pronounced upward jump at 8 hours. 

 
The transcripts6 indicate that the students were able to mathematize the problem without 

much difficulty, even after a faulty start with the second pair.  They were able to use the 

software to explain the dynamic behavior represented in the simulation graph of the initial 

model.  That was a key point.  Once they had an understanding of the cause of the dynamic 

behavior pattern of the original model they were able to modify the model and were 

reasonably successful predicting the new behavior of the modified model.  All of this work 

                                                
6 Conversation clips from the transcripts can be found in the supplemental file - Appendix C. 
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was on a model whose behavior was not typical of functions they had seen in class at that 

point.   

The student problem solving scenario captured in these two videotapes supports the claim 

that students are able to mathematize new scenarios that are combinations of behaviors they 

already know and are able to analyze and modify and reanalyze the problem with relative 

ease.  The videotaping lasted about 33 minutes for each pair of students. 

This analysis was done comparing three problems across both student pairs (horizontal 

analysis) and also analyzing the improvement in thinking over the full time frame (vertical 

analysis) for each pair of students. 

Algebra Questionnaire 

A Likert scale was used to give students in the experimental groups an opportunity to 

express how useful they felt the lessons were in helping them understand the concept of linear 

and exponential functions.  The lowest indicator was labeled “Not very helpful” and the highest 

indicator was labeled “Very helpful.” There were five points on the scale.  Students were to 

choose one of the five points to assess each lesson (motion detector, building linear STELLA 

models, tape-walking floor activity, building exponential STELLA models, building a STELLA 

bank model with the teacher, building a STELLA drug model). 
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Students were then asked to make comments about the lessons in general. 

  Not_very 
helpful 

   Very 
helpful 

Activity Teacher 1 2 3 4 5 
1. The motion 
detector activity 

1 
2 

1 
4 

2 
3 

10 
6 

10 
5 

2 
1 

2. Building linear 
models on 
computer with 
STELLA 

1 
2 

2 
6 

1 
3 

11 
3 

5 
6 

6 
1 

3. The walking 
into/out of the box 
made with tape on 
the floor 

1 
2 

0 
6 

3 
2 

13 
5 

5 
5 

4 
1 

4. Building 
exponential models 
with STELLA 

1 
2 

2 
5 

2 
6 

11 
2 

7 
5 

3 
1 

5. Building bank 
model in class with 
the teacher 

1 
2 

1 
4 

0 
3 

8 
5 

8 
6 

8 
1 

6. Building the drug 
model with 
STELLA 

1 
2 

1 
5 

1 
5 

7 
5 

12 
3 

4 
1 

7.  From these six lessons, did you feel 
you learned important/useful information 
about linear and exponential functions? 

1 
2 

5 
12 

6 
2 

14 
5 

8.  Do you think the STELLA models 
helped you understand why the graphs of 
the situation you built models for had a 
linear or exponential shape? 

1 
2 

3 
7 

1 
3 

19 
8 

9.  Do you think this activity (all 6 
lessons) were worth doing? 

1 
2 

8 
12 

3 
1 

14 
6 

Additional Comments 1 
2 

0 
3 

0 
0 

4 
0 

Statement Teacher 
 

Negative Neutral Positive 

Comments about items 1-6 1 
2 

3 
5 

2 
0 

9 
3 

Table 8: Student comments about their impression of the usefulness of the experimental lessons. 

Table 7: Likert scale results, student opinions about the lessons. 
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Of the comments made regarding question 1-6:  55% were positive comments (enjoyed, 

liked, fun, helpful), 9% were neutral (wanted more interaction with the teacher, depends on the 

person), and 36% were negative (took more time than it was worth, didn’t understand,  

confusing). 

  Of the comments made regarding question 7: 43% were positive (yes: reasons varied 

from gained better understanding because I am a visual learner, liked the problems, it was hands-

on).  18% were neutral (I already knew linear and exponential, learned a little).  39% were 

negative (no: I already knew this, confusing, not taught well, easier to just use numbers).  

Of the comments made regarding question 8: 66% responded in the affirmative (it was 

visual so easier to understand, the models were interactive, I could see what was going on, I 

already understood the concept but now I know it from a different perspective), 10% were 

neutral (I already understood the concept), and 24% were negative (it was confusing, I still don’t 

understand them, it was unclear). 

Of the comments made regarding question 9: 45% said yes (fun, it definitely improved 

my understanding, they all tied together, because I learned something that actually might be 

useful in my life), 16% were neutral (timing was bad – right before finals, useful now but 

probably not in the future), and 45% were negative (no impact on my learning, hard to 

understand, felt like we were rushing, not practical, confusing).  

Validity 

This procedure (the six lessons) is assumed to have content and face validity because the 

lessons deal specifically with linear and exponential function concepts and have been used 

successfully with algebra II students in the past.  The procedure is also assumed to have 
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construct validity, hoping to support a more conceptual understanding of linear and exponential 

functions.  The definition used to support evidence of conceptual understanding is 1) whether 

students can extend the models built in class to include a combination of those functions (linear 

and exponential), 2) whether students can comfortably transfer the linear and exponential 

scenarios they studied in the model-building activities 2 and 5 to a drug model scenario, and 3) 

whether students can correctly modify the initial drug model they create at the beginning of 

activity 6 to solve additional problems presented later in the drug lesson.  Note: The pre- and 

post-assessment is assumed to have reliability due to the use of the cross-balancing7 process for 

distributing the two forms of the assessment. 

C. Discussion and Lessons Learned 
 

The Assessment 

• The extreme compression of time for the six lessons (one of which – the graphing lesson - 
was not able to be executed in the experimental group for teacher 2) impacted the overall 
results of the post assessment, as students did not have time to complete any lesson and 
there was no time to provide feedback to the students on their work before moving on to 
another lesson.  Also, students who missed a class did not have an opportunity to make up 
the lesson due to the very short time frame for the experiment.  Consequently, the full post-
assessment scores do not represent a reasonable assessment of overall progress toward 
shedding light on the research question.  

 
• For any possible meaningful results from the total scores the experiment would have to be 

conducted over a longer period of time. 
   
• It was a mistake to do this experiment as a short unit (even if we had been able to dedicate a 

full three weeks to the unit) rather than infusing it into the regular curriculum.  It seemed as 
if most students did not place much value on the new approach because they knew they 
would not see it again after the experiment concluded.  Also, a short unit experiment, while 
easier to design and implement, gives short shrift to the fact that SD analysis is a way of 
thinking about problems.  It needs incubation time to be fully realized. 

                                                
7 Half the students received form A and half form B for the pre-assessment.  Then the form was reversed to use for 
the post-assessment for each student. 
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• To perform statistical test item confidence analysis it is important to ask questions that have 

at least 5 different possible scores.  This was not considered in advance of the execution of 
the experiment.  

 
• It is important to view the data using multiple perspectives.  Combining the experimental 

classes and control classes in order to achieve a larger “n” value to assist statistical analysis 
actually hid important relationships that ultimately negated the assumptions that the 
collective data seemed to present. 

 
The Lessons 
 
• STELLA linear and exponential model building seems to narrow the gap in performance 

between students who traditionally perform well compared to students who traditionally 
perform more poorly in algebra II.   Evidence for this statement was based upon comparing 
the class averages on the linear and exponential graded assignments for the two 
experimental groups whose performance on their first semester algebra II course was 
different by 14 percentage points. 

 
• The results of the drug model lesson completed by the two randomly selected student teams 

who were videotaped were quite positive.  Even the students who created an incorrect 
model initially were able to correct their mistake themselves as they built the model.  Those 
results provide promise that, had the two classroom attempts to complete the drug model 
lesson not succumb to so many technical problems,8  there might have been an opportunity 
to determine whether more students were able to transfer what they learned in the linear and 
exponential modeling lessons to a new, more complicated scenario.   

 
The Questionnaire 

• Students who generally had more success with math evaluated this very quick experiment 
in a more positive light than the students who were generally less successful.  This does not 
mean the lessons could not have altered the negative view had the students been given more 
time to work with the software.  The experiment was rushed and did not provide time for 
students to complete lessons, nor was there time to provide feedback about their work to the 
students, both situations that are felt more strongly by students who are already 
uncomfortable with regard to course content.  

  
• Although the teachers chose the placement of the experiment in the school calendar, some 

of the students indicated that they were not pleased that the experiment was conducted just 
before semester final exams.  They wanted to work on lessons that specifically prepared 

                                                
8 The netbooks were old.  Quite a few of the computers did not function properly.  By the end of the experiment, the 
STELLA software, whose image had to be “pushed” onto the computers from the central district office, was missing 
from a significant number of the computers that were still operational.   
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them for the semester exam.  The students knew their course grades would not be impacted 
by their performance on any of the experiment assessments. 

 
Other 
 
• There are other issues that should be researched.   Another article by this author 

documenting this experiment from the perspective of the teacher is currently in the review 
process with a mathematics education journal.  It includes an analysis of teacher beliefs, 
teacher reflections during the experiment and also clarifies why the two teachers, both of 
whom have found SD modeling useful for their students, no longer use it in their 
curriculum. 

D. Conclusion 
 

It is becoming abundantly clear that adults need to gain facility dealing with complex 

systems scenarios as informed citizens or even when making decisions about social 

interactions.  It is becoming clear that some educational leaders also feel that educating people 

about complex systems should start in mainstream education, with students in K-12.  Progress 

has been made in K-12, but research supporting the improvement in learning outcomes for 

students at this level is sorely lacking.  The experiment described in this paper encountered 

some of the problems mentioned by researchers who have conducted classroom experiments 

with SD in the past.  The difficulty with the technology and the extremely compressed time 

frame for executing the experimental lessons led to results showing no statistical difference 

between the experimental and control groups on the pre- and post-assessments.  However, there 

were promising results from data gathered on the lessons themselves, indicating SD modeling 

may provide a useful method of closing the gap somewhat between students who are adept at 

math and those who are less adept, when analyzing dynamic problems.  The results of the 

videotaped think-aloud protocol used with a pair of students, randomly selected from each of 

the experimental classes, as they built a drug model indicate that students are able to 
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successfully build and analyze a model that is slightly more difficult than the typical problems 

studied in algebra II.  The experiment should be repeated over a more extended time frame 

where the experimental lessons are infused into the mainstream curriculum.  The experiment 

was intended to suggest a path from the current topics covered in algebra toward those topics 

that are more illustrative of complex systems.  In this vein, the current experiment can add 

value to the current literature. 

The student work produced in classrooms where teachers are already using Systems 

Thinking and System Dynamics modeling is impressive.  This work will be largely ignored 

until documentation can be provided showing an improvement in learning outcomes.  This 

improvement will probably not be captured by current standardized tests.  Further work needs 

to devise appropriate assessment instruments to capture the more holistic thinking, attention to 

feedback analysis, structure/behavior connections, and increased depth of understanding 

evidenced in student explanations when they are using systems tools.  We should have a 

discussion about what behaviors we hope to see in students studying systems that sets them 

apart from students in other more traditional classes.  We should have a discussion about how 

to structure experiments to guide our studies to give them the best chance to produce results 

that we can document.  I invite those researchers who are interested in pursuing this path to 

build from the mistakes of this experiment and then tell us how much further they were able to 

progress, than I have.  We can do this.   It is, after all, a complex systems problem. 
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