Experiential Learning and Variation in Medical Practice

Qualitative, Simulation, and Quantitative Data-Based Models

Navid Ghaffarzadegan

Rockefeller College of Public Affairs and Policy
Department of Public Administration and Policy
University at Albany, State University of New York
Introduction
Introduction

- Several indicators of abundant suboptimal decisions in medicine.
 - Mistakes - 98,000 people die in the United States hospitals every year.
 - Bias - Overuse of defensive medical practices such as medical tests.
 - Practice variation - Disagreement on diagnoses and treatments.

- Problem Significance.
STUDY 1: What is Practice Variation?

A Qualitative Literature Review Based Study

Navid Ghaffarzadegan, Erika Martin

Rockefeller College of Public Affairs and Policy
Department of Public Administration and Policy
University at Albany, State University of New York
Problem Definition

☐ This study:
 ◼ Focuses on decision making determinant of practice variation.

☐ Main questions:
 ◼ How has practice variation been studied?
 ◼ How can we make sense of the literature?

☐ Proposes an analytic framework of behavioral decision making determinants of practice variation.
Methods

☐ Literature Review
☐ Searched PubMed for "practice variation," which identified 333 articles.
☐ Narrowed articles to those published in core medical journals.
☐ Finally, we tracked key citations from the articles reviewed. Our final sample included 75 articles.
Methods

- The open coding revealed two key findings:
 - First, several behavioral decision making phenomena play important roles in practice variation.
 - Second, there is a conceptual difference across studies of practice variation in how researchers categorize, describe, and study practice variation.
Table (1): Different forms of practice variation among medically similar patients

<table>
<thead>
<tr>
<th></th>
<th>Within–physician</th>
<th>Between–physician</th>
</tr>
</thead>
<tbody>
<tr>
<td>Within–patient</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Between–patient</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
STUDY 2: Beyond Personality Trait and Financial Incentives, The Role of Experiential Learning

A Simulation Model

Navid Ghaffarzadegan

Rockefeller College of Public Affairs and Policy
Department of Public Administration and Policy
University at Albany, State University of New York
Introduction

- Common explanations for bias and practice variation
 - Finance structures
 - Physician characteristics
 - Regional and organizational factors
- Theory and Policy Implications
Problem Definition

- Dynamic Hypothesis:

- Practice variation and bias do not have to be caused by personality traits, financial incentives, and regional variation, **but can endogenously emerge through daily practices and outcome learning even among physicians with similar training working in the same region.**
Research Design

☐ Theory:
 - Psychology
 - Experiential Learning
 - Medical Decision Making, Health policy

☐ Method: Simulation
 - Discrete, dynamic, feedback-based model of medical decision making. Our unit of analysis is a physician

☐ Case: Obstetricians
 - Then we investigate generalizability of the findings
Case

- Decision Making:
 - Vaginal Delivery vs. C-section
 - C-section side effects
 - Higher risks for mom
 - Higher risks for baby
 - Next delivery problems
- 34% of the cases in US
 - W.H.O.: suggests 10-15%
 - 20% UK
- Increasing trend
Case

Standard deviation = 6.5 percentage point

Epstein and Nicholson (2009)
Model

A physician's cognition

A causal diagram of obstetrics practice for a single obstetrician
Results (Base run)

Each line represents one physician. All lines together show disagreement (divergence) and bias from optimal threshold (i.e., 5/10).

optimal threshold

Threshold dynamics
STUDY 3: Can Simulation Results Replicate Real Data

A Data-Based Simulation Model

Navid Ghaffarzadegan*, Erika Martin*, Andrew Epstein**

* University at Albany, State University of New York
** University of Pennsylvania
Research Design

- Case: Obstetricians

- Data on CS decisions of 100 randomly selected FL obstetricians who started practice between 1992 and 2000.

- Can We explain (replicate) CS trend in physicians during through practice?
A Sample of Data: One Doctor’s CS Rate through years of practice after residency
<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs.</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decision and Outcome</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-section</td>
<td>257458</td>
<td>0.301218</td>
<td>0.458788</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Labor</td>
<td>257458</td>
<td>0.799909</td>
<td>0.400069</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>major complication</td>
<td>257458</td>
<td>0.125924</td>
<td>0.331764</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Patient Risk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>previous C-section</td>
<td>257458</td>
<td>0.138477</td>
<td>0.345401</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>One of 12 risk factors</td>
<td>257458</td>
<td>0.273151</td>
<td>0.445579</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Patient Characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minority</td>
<td>257458</td>
<td>0.435224</td>
<td>0.495787</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>poor payer</td>
<td>257458</td>
<td>0.439101</td>
<td>0.496278</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Physician Chr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>immigrant doctor</td>
<td>257458</td>
<td>0.170591</td>
<td>0.376152</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>female doctor</td>
<td>257458</td>
<td>0.244378</td>
<td>0.429719</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Model

A causal diagram of obstetrics practice for a single obstetrician
Model

- Types of outcome feedback in data:
 - Some VD cases end up with emergency CS
 - False Negative
 - Major Complications Are reported. Major Complication for patient in labor
 - False Negative
 - Major Complication for a patient in CS
 - Maybe False Positive, Maybe True Positive?
Calibration

- What is the generic approach?
- What can we do here?
$x = \beta_0 + \beta_{1,i} (PyCh) + \beta_{2,j} (PatCh) + \beta_{3,j} (PatHl) + \beta_{4,j} (PastFB) + \beta_{5,j} (PastFB^2) + \beta_6 (Time)$
\[x = \beta_0 + \beta_{1,j}(PyCh) + \beta_{2,j}(PatCh) + \beta_{3,j}(PatHl) + \beta_{4,j}(PastFB) + \beta_{5,j}(PastFB^2) + \beta_6(Time) \]
Calibration (A sample of Results)

<table>
<thead>
<tr>
<th></th>
<th>Dependent Variable: Labor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Model 1</td>
</tr>
<tr>
<td>Total number of emergency CS ($\Sigma F1$)</td>
<td>-0.003242</td>
</tr>
<tr>
<td></td>
<td>(0.000054)</td>
</tr>
<tr>
<td>Square of $\Sigma F1$</td>
<td>1.07E-05</td>
</tr>
<tr>
<td>Total Labor-with-Complication ($\Sigma F2$)</td>
<td>-8.7E-05</td>
</tr>
<tr>
<td></td>
<td>(7.76E-05)</td>
</tr>
<tr>
<td>Square of $\Sigma F2$</td>
<td>3.07E-06</td>
</tr>
<tr>
<td>Total CS-with-Complication ($\Sigma F3$)</td>
<td>0.005804</td>
</tr>
<tr>
<td></td>
<td>(0.000382)</td>
</tr>
<tr>
<td>Square of $\Sigma F3$</td>
<td></td>
</tr>
<tr>
<td>Pseudo R2</td>
<td>0.3717</td>
</tr>
</tbody>
</table>
Base Run

C-sec Threshold Similar initial conditions

0 250 500 750 1000 1250 1500 1750 2000 2250 2500
Time (Month)
Base Run

C-sec Threshold Different Initials

Time (Month)

0 250 500 750 1000 1250 1500 1750 2000 2250 2500
Base Run

Scheduled C-section

Total C-section (Scheduled + After laboring)
Comparison with Data (Scheduled C-section rate)
Next steps of this paper

- Out of sample test.
- Can it replicate NY?
- Can it replicate newer Doctors?
Discussions

☐ Discussion about the papers? Especially the last paper.

☐ Discussion about the research path.

☐ What do you think?